European Journal of Medicinal Plants

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 32 [Issue 12]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Effect of Two Drying Methods on the Bioactive Cashew Apple Varieties Consumed in the City of Garoua (Northern Cameroon)

  • Kouogueu Seuyim Ghislain
  • Nguedjo Wandji Maxwell
  • Dibacto Kemadjou Ruth Edwige
  • Nseme Mboma Yves Didier
  • Djouka Nembot Pelagie Marcel
  • Takuissu Nguemto Guy Roussel

European Journal of Medicinal Plants, Page 64-77
DOI: 10.9734/ejmp/2021/v32i1230436
Published: 16 December 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Aims: The cashew tree (family Anacardiaceae) grows widely in many parts of African countries, including Cameroon. Its fruit and nut are used for food and several studies have shown their beneficial effects on health. This work aimed to evaluate the impact of two drying methods on the content of bioactive compounds and antioxidant activity.


Methodology: Four varieties (VAR 1, VAR 2, VAR 3, VAR 4) of cashew apple samples were collected and drying using sun-dried and oven-dried to a constant weight, and then ground in a blender to a powder, the fresh one was cut up and crushed in a blender. All sample were reconstituted with distilled water and polyphenols, flavonoids, alkaloids contents, and antioxidant activity through different mechanisms (DPPH radical, FRAP and TAC assays) were assessed.


Results: Alkaloids ranged from 1.50 mg EQui/g MF to 5.69 mg EQui/g DM for fresh and oven-dried VAR 1 respectively, polyphenols ranged from 786.15 mg EAG/g MF to 2836.92 mg EAG/g DM for fresh and oven-dried VAR 1 respectively, flavonoids ranged from 8.18 mg EAG/g MF to 295.45 mg EAG/g DM for fresh and oven-dried VAR 2 respectively. TAC values ranged from 13.09 mg EAA/g MF to 67.06 mg EAA/g for fresh and oven-dried VAR3 and VAR2 respectively. The highest DPPH radical scavenging value (86.25%) was obtained with fresh VAR 4 and the lowest (25.67%) with fresh VAR 1. The highest ferric reducing antioxidant power (FRAP) was obtained with fresh VAR 1 and VAR 3 (0.27 mg AAE/g MF) and the lowest with VAR 3 and VAR 4 oven-dried (0.23 mg AAE/g MF).


Conclusion: In conclusion, the different cashew varieties studied in this work are a good source of antioxidants. The drying method significantly affects bioactive compounds and antioxidant activities. A weak but not significant correlation was obtained between the number of bioactive compounds and antioxidant activities.


Keywords:
  • Drying methods
  • cashew tree
  • bioactive compounds
  • antioxidant activity.
  • Full Article – PDF
  • Review History

How to Cite

Ghislain, K. S., Wandji Maxwell, N., Ruth Edwige, D. K., Yves Didier, N. M., Pelagie Marcel, D. N., & Guy Roussel, T. N. (2021). Effect of Two Drying Methods on the Bioactive Cashew Apple Varieties Consumed in the City of Garoua (Northern Cameroon). European Journal of Medicinal Plants, 32(12), 64-77. https://doi.org/10.9734/ejmp/2021/v32i1230436
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Daramola D. Assessment of some aspects of phytonutrients of cashew apple juice of domestic origin in Nigeria. African Journal of Food Science. 2013;7:(6): 107-112.
DOI: 10.5897/AJFS2013.0984

Hamawa Y, Dona A, Kanmegne ON, Mbaye C, Niwah, Awono JMDK, Mapongmetsem PM. (2019). Effet du poids de noix et de la dose d’engrais sur la germination et la croissance de l’anacardier (Anacardium occidentale L., Anacardiaceae) dans la savane guinéenne du Cameroun. Afrique Science. 2019;15(5):302–312. French.

FAO: FAOSTAT agricultural production Data; 2019.
Available: http://faostat.fao.org.

Rocha M, Souza M, Benedicto S, Bezerra M. Production of Biosurfactant by Pseudomonas Aeruginosa grown on cashew apple juice. Applied Biochemistry and Biotechnology. 2007;137:185-194.

PMID: 18478387
DOI: 10.1007/s12010-007-9050-6

Giro ME, Martins JJ, Rocha MV, Melo VM, Gonçalves LR. Clarified cashew apple juice as alternative raw material for biosurfactant production by Bacillus subtilis in a batch bioreactor. Journal of Biotechnology. 2009;4:(5),738e747.

PMID : 19452470
DOI: 10.1002/biot.200800296

Filgueiras HA, Alves RE, Masca JL, Menezes JB. Cashew apple for fresh consumption. Research on harvest and postharvest technology in brazil. Acta Hortic. 1999;485(20):155-160.
Avaialble :https://doi.org/10.17660/ActaHortic.1999.485.20

Ogunmoyela O. Prospects for cashew “apple” processing and utilization in Nigeria. Processing Biochemistry.1983;23: 6-7.

Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International. 2011;44:2047–2053.
Avalable :https://doi.org/10.1016/j.foodres.2010.11.003

Bahare S, Mine G, Celale K, Beraat O, Maria F, Joara N, Camila F, Teresinha G, Henrique D, Benabdallah A, Lorene A, Zeliha S, Mustafa S, Zubaida Y, Javad S, Ali M, Hari P, Miquel M, Arun K, Natália M, William C. Anacardium Plants: Chemical, Nutritional Composition and Biotechnological Applications. Biomolecules. 2019;9(9) :465;
Avaialble https://doi.org/10.3390/biom9090465

Ralf M, Ester V, Jürgen C, Judith H, Claudia C, Jochen U, Angelika M, Víctor J, Patricia E, Reinhold C. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chemistry. 2016;274–282
PMID: 26830589
DOI: 10.1016/j.foodchem.2016.01.038

Madjitoloum B, Talla E, Nyemb J, Ngassoum M, Tsatsop T, Mahmout Y. Comparative survey of three processes used for the extraction of total phenol content and total flavonoid content of Anacardium occidentale L. and the assessment of its antioxidant activity. African Journal of Biotechnology. 2018;17(40):1265-1273.
DOI: 10.5897/AJB2017.16294

Ajileye O, Obuotor E, Akinkunmi E, Aderogba M. Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. Journal of King Saud University. Science. 2015;27(3):244-252. Avaialble :https://doi.org/10.1016/j.jksus.2014.12.004

Ricard R, Mònica B, Jordi Salas S. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Science & Nutrition 2016;4(2):329–338. DOI: 10.1002/fsn3.294

Brito ES, Araújo MC, Lin LZ, Harnly J. Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chemistry. 2007;105(3):1112-1118.
Avaialble https://doi.org/10.1016/j.foodchem.2007.02.009

Nathalia N, Cheila G, Michelle G, Leandra G. Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. Journal of Food Science and Technology. 2019; 57(1):12-21.
PMID: 31975703 PMCID: PMC6952502.
DOI: 10.1007/s13197-019-04051-7

Azoubel PM, El-Aouar AA, Tonon RV, Kurozawa LE, Antonio GC, Murr FE, Park KJ. Effect of osmotic dehydration on the drying kinetics and quality of cashew apple. International Journal of Food Science and Technology. 2009;44(5): 980-986.
Avaialble https://doi.org/10.1111/j.1365-2621.2008.01783.x

Ipsita Das, Amit Arora. Post-harvest processing technology for cashew apple-A review. Journal of Food Engineering. 2017;194:87-98.
Avaialble https://doi.org/10.1016/j.jfoodeng.2016.09.011

Pirbaloutiab A, Mahdada E, Crakerb L. Effect of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry. 2013;141(3):2440-2449.
Avaialble https://doi.org/10.1016/j.foodchem.2013.05.098

Calín-Sánchez Á, Lipan L, Cano-Lamadrid M, Kharaghani A, Masztalerz K, Carbonell-Barrachina ÁA, Figiel A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables, and aromatic herbs. Foods. 2020;9:1261.

PMID : 32916839, PMCID : PMC7554907
DOI : 10.3390/aliments9091261

Managa M, Sultanbawa Y, Sivakumar D. Effects of different drying methods on untargeted phenolic metabolites and antioxidant activity in Chinese Cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun.). Molecules. 2020;25:1326.

PMID : 32183223. PMCID : PMC7145292,
DOI : 10.3390/molécules25061326

Kejing A, Dandan Z, Zhengfu W, Jijun W, Yujuan X, Gengsheng X. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties and microstructure. Food Chemistry. 2016;197(B):1292-1300.

PMID: 26675871.
DOI: 10.1016/j.foodchem.2015.11.033

Medoua G, Oldewage-Theron W. Effect of drying and cooking on nutritional value and antioxidant capacity of morogo (Amaranthus hybridus) a traditional leafy vegetable grown in South Africa. Journal of Food Science and Technology. 2014;51:736–742. PMID : 24741168, PMCID : PMC3982004,
DOI : 10.1007/s13197-011-0560-4

Singleton V. and Rossi J. Colorimetry of total phenolics with phosphomolydic-phosphotungstic acid reagents. American Journal of Enology Viticulture. 1965;16:144–158.

Aiyegoro OA and Okoh AI. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary Medicine and Therapies. 2010;10(21):1–8.

PMID:20470421 PMCID : PMC287764
DOI : 10.1186/1472-6882-10-21

Singh D, Srivastava B, Sahu A. Spectrophotometric determination of rauwolfia alkaloids : Estimation of reserpine in pharmaceuticals. Analytical sciences. 2004;20:571-573.

PMID: 15068309.
DOI: 10.2116/analsci.20.571

Katalinie V, Milos M, Modun D, Musi I, Boban M. Antioxidant effectiveness of selected wines in comparison with (+) catechin. Food Chemistry. 2004;86: 593-600. Avaialble https://doi.org/10.1016/j.foodchem.2003.10.007

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry. 1999;269(2):337–341.
PMID: 10222007, DOI: 10.1006/abio.1999.4019

Gordon A, Friedrich M, Da Matta VM, Moura CF, Marx F. Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits. 2012;67(4):267-276.
DOI: 10.1051/fruits/2012023

Figueroa-Valencia M, Rosales-Martinez P, Santoyo-Tepole F, Ramos-Monroy OA, García-Ochoa F, Hernández-Botello MT, López-Cortez MS. Antioxidant Properties of Red and Yellow Varieties of Cashew Apple, Nut and Husk (Anacardium Occidentale L.) Harvested in Mexico. Journal of Antioxidant Activity. 2019; 1(4):19.
DOI: 10.14302/issn.2471-2140.jaa-19-2747

Samira E, Abderraouf E, Abdellatif H. Effect of maturity and environmental conditions on chemical composition of olive oils of introduced cultivars in morocco. Hindawi, Journal of Food Quality. 2019;Article ID 1854539:14.
Avaialble https://doi.org/10.1155/2019/1854539

Regina M, Neema K, Edna M, Peter M. Physio-chemical properties of five cashew apple (Anacardium occidentale L.) varieties grown in different regions of Tanzania. International Journal of Biosciences. 2017;11(5):386-395.
DOI: 10.12692/ijb/11.5.386-395

Adou M., kouassi DA, Tetchi FA, Amani NG. Phenolic profile of cashew apple juice (Anacardium occidentale L.) from Yamoussoukro and Korhogo (Côte d’Ivoire). Journal of Applied Biosciences. 2012;49:3331– 3338.

Zhong M, Huang K, Zeng J, Li S, Zhang L. (2010). Determination of contents of eight alkaloids in fruits of Macleaya cordata (Willd) R. Br. from different habitats and antioxidant activities of extracts. Journal of Central South University. 2010;17:472-479. DOI: 10.1007/s11771-010-0509-1

López-Vidaña E, Pilatowsky F, Cortés F, Rojano B, Ocaña A. Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium meridionale Swartz). International Journal of Food Properties. 2017;20:294–305. Avaialble https://doi.org/10.1080/10942912.2016.1155601

Blank DE, Bellaver M, Fraga S, Lopes TJ, De Moura NF. Drying kinetics and bioactive compounds of Bunchosia glandulifera. Journal of Food Process Engineering. 2018;41:e12676.
Avaialble https://doi.org/10.1111/jfpe.12676

Leani M, Costanza C, Carmine N, Luigi D, Luca I., Alberto P, Lucia G. Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. Horticulturae. 2021;7: 10.
Avaialble https://doi.org/10.3390/horticulturae7010010

Serratosa M, Marquez A, Lopez-Toledano A, Medina M, Merida J. Changes in Hydrophilic and Lipophilic Antioxidant Activity in Relation to their Phenolic Composition during the Chamber Drying of Red Grapes at a Controlled Temperature. Journal of Agricultural and Food Chemistry. 2011;59(5):1882–1892.
PMID: 21319807.
DOI: 10.1021/jf1042536

Çoklar H, Akbulut M. Effect of Sun, Oven and Freeze-Drying on Anthocyanins, Phenolic Compounds and Antioxidant Activity of Black Grape (Ekşikara) (Vitis vinifera L.). South African Journal of Enology and Viticulture. 2017;38(2).
Avaialble http://dx.doi.org/10.21548/38-2-2127

Tientcheu Y, Dibacto R, Edoun F, Matueno E, Tchuenchieu A, Yadang G. and Medoua G. Comparative Study of the Effect of Five Drying Methods on Bioactive Compounds, Antioxidant Potential and Organoleptic Properties of Zingiber officinale (Ginger) Rhizome. European Journal of Medicinal Plants. 2021;32(3): 22-33.
DOI: 10.9734/ejmp/2021/v32i330378

Olimpia A, Ersilia A, Dacian L, Adina B, Dorin C, Mariana A, Diana M, Maria B. Chemical composition and antioxidant activity of some apricot varieties at different ripening stages. Chilean Journal of agricultural research. 2018;78(2): 266-275.
DOI: 10.4067/S0718-58392018000200266

Kikakedimau N, Musuyu M, Nsendo M, Doumas P, Kahambu M, Taba K, Luyindula N. Correlation between antioxidants and antiradical activities with in vitro antimalarial activity of Phyllanthus odontadenius. American Society for Mass Spectrometry. 2019;3(7):144–154.

Agbor GA, Vinson JA, Oben JE, Ngogang JY. In vitro antioxidant activity of three piper species. Journal of Herbal Pharmacotherapy. 2007;7(2): 49–64.

PMID:18285307,
DOI : 10.1300/j157v07n02_04

Dibacto RE, Tchuente BR, Nguedjo MW, Tientcheu YM, Nyobe EC, Edoun FL, Kamini MF, Dibanda RF, Medoua GN. Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Persea americana Peels Consumed in Cameroon. Hindawi the Scientific World Journal. 2021; Article ID 8882594, 11 pages.
Avaialble https://doi.org/10.1155/2021/8882594

Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry. 2004;84:551–562.
Avaialble https://doi.org/10.1016/S0308-8146(03)00278-4

Rodríguez-Bernaldo D, Frecha-Ferreiro S, Vidal-Pérez A, López-Hernández J. Antioxydant compounds in edible brown seweeds. European Food Research and Technology. 2010:231(3):495–498.
Avaialble https://doi.org/10.1007/s00217-010-1295-6
  • Abstract View: 262 times
    PDF Download: 98 times

Download Statistics

  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, European Journal of Medicinal Plants. All rights reserved.