Clean Technologies for Obtaining Biocomposites of Brazilian Ginseng Pfaffia glomerata (Spreng.) Pedersen: A Review

Main Article Content

Charlini Balastreri Dorta de Oliveira
Otávio Akira Sakai

Abstract

The Brazilian ginseng Pfaffia glomerata (Spreng.) Pedersen belongs to the Amaranthaceae family and has as its main component β-ecdysone, a phytoecdysteroid, found in the roots, stem, flowers and leaves of the plant. In the last years sustainability and the environment concern were decisive for the emerging supercritical fluid extraction and pressurized fluid extraction technologies to obtain biocomposites from the plant. These extraction technologies use solvents (CO2, ethanol and water) and uses as controllable parameters pressure, flow, time and temperature. The combination of these factors generates atoxicity, no residue in the final extract and have a reduced energy cost and an excellent extraction yield. This work reviews the literature from 2007 to 2020 on the use of clean technology to obtain chemical biocomposites of interest in the areas of biology, agronomy, food and pharmaceutics. It is was concluded that the supercritical fluid extraction and pressurized liquid extraction extracts were very efficient in obtaining β-ecdysone, since both presents low energy consumption, uses environmentally correct solvents which reduces harmful effects on the environment. Finally, to choose the best technology for extraction of other biocomposites depends on the chemical compound of interest.

Keywords:
Pfaffia glomerata, clean technologies, sustainability, β-ecdysone.

Article Details

How to Cite
Oliveira, C. B. D. de, & Sakai, O. A. (2020). Clean Technologies for Obtaining Biocomposites of Brazilian Ginseng Pfaffia glomerata (Spreng.) Pedersen: A Review. European Journal of Medicinal Plants, 31(14), 18-31. https://doi.org/10.9734/ejmp/2020/v31i1430314
Section
Review Article

References

Souza VC, Lorenzi H. Botânica sistemática: Guia ilustrado para identificação das famílias de angiospermas da flora brasileira, baseado em APG II, Instituto Plantarum; 2005.

Marchioretto MS, Miotto STS, Siqueira JC. Padrões de distribuição geográfica das espécies brasileiras de Pfaffia (Amaranthaceae). Rodriguesia. 2009; 60(3):667–681.

Dewick PM. Secondary metabolism: The building blocks and construction mechanisms. Medical Natural Products. 2001;21(2):349–352.

Oliveira F, Akisue G, Akisue MK. Contribuição para o estudo farmacognóstico do ginseng brasileiro, Pfaffia paniculata (Martius) Kuntze. An. Farm. Quim. S. Paulo. 1980;20:261–277.

Corrêa-júnior C, et al. Pfaffia glomerata Ginseng-brasileiro (Espécies nativas da flora brasileira de valor economico atual ou potencial plantas para o futuro - Região Centro-Oeste). Biodiversidade; 2016.

Pedersen T. Amaranthaceae, Caryophyllaceae. In: Burkart A. (ed.). Flora Ilustrada de Entre Rios (Argentina). 1987; 6:160–203, 251–291.

Marchioretto MS. Pfaffia in lista de especies da flora do Brasil. Jardim Botâni- co do Rio de Janeiro. 2018;4330. Available:http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/ FB4330

Magalhães PM. Agrotecnología para el cultivo de fáfia o “ginseng” Brasilero. In: Mar-Tínez JVA, Bernal HY, Cáceres A. (Org.). Fundamentos de agrotecnologia de Cultivo de Plantas Medicinales Iberoamericanas. 2000;1(1):323–332.

Neves CS, et al. Brazilian ginseng (Pfaffia glomerata Spreng. Pedersen, Amaranthaceae) methanolic extract: Cytogenotoxicity in animal and plant assays. South African Journal of Botany. 2016;106:174–180.

Guerreiro CPV. Análise de crescimento, curva de absorção de macronutrientes (N, P e K) e teor de B-ecdisona em fáfia (Pfaffia glomerata (Spreng.) Pedersen) em função de adubação orgânica, Dissertação de mestrado. 2006;146.

Brasil. Ministério do Desenvolvimento, I. e C. E. 2013;3361. Available:http.//www.desenvolvimento.gov.br//sitio/interna/interna.php?area=5&menu=3361 (Access in 02. Apr. 2018).

Corrêa-júnior C. Estudo agronômico de fáfia (Pfaffia glomerata (Spreng.) Pedersen): Sazonalidade na produção de raízes e conteúdos de beta-ecdisona em diferentes acessos de São Paulo, Paraná e Mato Grosso do Sul. Tese de Doutorado. 2003;1–102.

Debien ICN. Estudo do processo de extração e equilíbrio de fases a altas pressões: Obtenção de beta-ecdisona do ginseng brasileiro (Pfaffia glomerata) e equilíbrio de fases de sistemas contendo L-ácido lático, CO2, propano e etanol. Tese de Doutorado. 2014;1–236.

Neto AG, et al. Analgesic and anti-inflammatory activity of a crude root extract of Pfaffia glomerata (Spreng) Pedersen. Journal of Ethnopharmacology. 2005; 96(1–2):87–91.

Montanari JRI, Magalhães PM, Queiroga CL. Influences of plantation density and cultivation cycle in root productivity and tenors of -ecdysone in Pfaffia glomerata (Spreng.) Pedersen. Abstracts. II World Congress on Medicinal and Aromatic Plants for Human Welfare. 1997;10–15.

Freitas CS, et al. Involvement of nitric oxide in the gastroprotective effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen, Amaranthaceae, in rats. Life Sciences. 2004;74:1167–117+9.

Nakamura S, et al. Brazilian natural medicines. IV. New Noroleanane-type triterpene and ecdysterone-type sterol glycosides and melanogenesis inhibitors from the roots of Pfaffia glomerata. Chem. Pharm. Bull. 2010;58:690–695.

Silva DCM. Supercritical extraction of aromatic and medicinal plants Brazilian lavender (Aloysia gratissima), Quebra pedra (Phyllanthus amarus) and Brazilian ginseng (Pfaffia paniculata): Experimental data, composition and evaluation of activity biological. Dissertação de mestrado. 2008; 1–213.

Takemoto T, et al. Pfaffic acid a novel nortriterpene from Pfaffia paniculata Kuntze. Tetrahedron Letters. 1983;24(10): 1057–1060.

Shiobara Y, et al. Pfaffane-type nortriterpenoids from Pfaffia pluverulenta. Phytochemistry. 1992;31:1737–1740.

Silva MRB, Guedes KB. Biomassa, morfologia e curva de crescimento de cinco genótipos de Pfaffia glomerata em condição de estufa. Monografia. 2012; 1–36.

Montanari JRI. Avaliação de genótipos de Pfaffia glomerata (Spreng) Pedersen visando seu cultivo comercial. Dissertação de mestrado. 2005;1–63.

Nishimoto N, et al. Pfaffosides and nortriterpenoid saponins from Pfaffia-paniculata. Phytochemistry. 1984;23(23): 139–142.

Festucci-buselli RA, et al. Level and distribution of 20-hydroxyecdysone during Pfaffia glomerata development. Brazilian Society of Plant Physiology Research. 2009;20(4):305–311.

Tanaka N, Al E. Clonal propagation of 20-hydroxyecdysone producing plant Pfaffia iresinoides. Plant Tissue Culture Letters. 1995;12(2):187–191.

Vardanega R. Obtenção de saponinas de raízes de ginseng brasileiro (Pfaffia glomerata) por extração dinâmica a baixa pressão assistida por ultrassom. Dissertação de Mestrado. 2013;1–124. Available:http://repositorio.unicamp.br/bitstream/REPOSIP/254915/1/Vardanega%2C Renata _M.pdf

Shiobara Y, et al. A nortriterpenoid, triterpenoids and ecdysteroids from Pfaffia glomerata. Phytochemistry. 1993;32:1527–1530.

Vardanega R, Santos DT, Meireles MAA. Proposal for fractionating Brazilian ginseng extracts: Process intensification approach. Journal of Food Engineering. 2017;196: 73–80.

Vardanega R. The use of clean technologies to obtain biosurfactants and prebiotic carbohydrates from Brazilian ginseng (Pfaffia glomerata). Tese de Doutorado; 2016.

Kim Jong-Hoon. Cardiovascular diseases and panax ginseng : A review on molecular mechanisms and medical applications. Journal of Ginseng Research. 2012; 16–26.

Ryu J, et al. The journal of supercritical fluids CO2 -assisted hydrothermal reactions for ginseng extract. The Journal of Supercritical Fluids. 2018;135: 17–24.

Wink M, Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64(1):3–19

Butler MS, Fontaine F, Cooper MA. Natural product libraries: Assembly, maintenance, and screening. Planta Med. 2014;80: 1161–1170.

Khaw K, et al. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources. Molecules. 2017;22:1186.

Herrero M, Ibañez E. Green extraction processes, biore fi neries and sustainability : Recovery of high added-value products from natural sources. The Journal of Supercritical Fluids. Elsevier. 2018;134:252–259.

Rombaut N, et al. Chemat F. Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod. Biorefin. 2014;8:530–544.

Das SAM, Balasubramanian S. Recent advances in modeling green solvents. Green Sust. Chem. 2017;5:37–43.

Ingrosso F, Ruiz-Lopez MF. Modeling solvation in supercritical CO2. Chem. Phys. Chem. 2017;18:2560–2572.

Bitencourt RG, Queiroga CL, Duarte GHB, et al. Sequencial extraction of bioactive compounds from Melia azedarach L. In fixed bed extractor using CO2 , ethanol and water. The Journal of Supercritical Fluids. 2014;95:355–363.

Vardanega R. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews. 2014;8:88– 95.

Santos DT, et al. Experimental and simulation study on formulation of clove essential oil products using alternative surfactant. Journal of Colloid Science and Biotechnology. 2013;2:1–11.

Rosa MTMG, et al. Obtaining annatto seed oil miniemulsions by ultrasonication using aqueous extract from Brazilian ginseng roots as a biosurfactant. Journal of Food Engineering. Elsevier Ltd. 2016;168:68–78.

Santos DT, et al. Energy consumption versus antioxidant activity of pressurized fluid extracts from Pfaffia glomerata roots energy consumption versus antioxidant activity of pressurized fluid extracts from Pfaffia glomerata roots. Chemical Engineering Transactions. 2013;35:1099–1104.

Millioli VS. Avaliação da potencialidade da utilização de surfactantes na biorremediação de solo contaminado com hidrocarbonetos de petróleo. Dissertação de Mestrado. 2009;1–200.

Noudeh GD, et al. Medical plants as surface activity modifiers. Journal of Medicinal Plants Research. 2011;5:5378–5383.

Dini I, GC, Tenore AD. Saponins in Ipomoea batatas tubers: Isolation, chacarterization, quantification and antioxidant properties. Food Chemistry. 2009;113(9).

Andreuccetti C. et al. Effect of surfactants on the functional properties of gelatin-based edible films, Journal of Food Engin eering. 2011;103:129–136.

Xiong J, et al. Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of Panax notoginseng. International Journal of Pharmaceutics. 2008;360:191–196.

Mitra S, Dungan SR. Cholesterol solubilization in aqueous micellar solutions of Quillaja saponin, bile salts or nonionic surfactants. Journal of Agricultural and Food Chemistry. 2001;49:384-394.

Sparg SG, Light ME, van Staden J. Biological activities and distribuition of plant saponins. Journal of Ethnopharmaco-logy. 2004;94:219–243.

Christina G, Costa DSM. Avaliação química, farmacológica e toxicológica do extrato de Pfaffia glomerata. Dissertação de Mestrado. 2015;1–72.

Tanimoto A. Avaliação da atividade anti-inflamatória intestinal de Pfaffia glomerata (Spreng.) Pedersen. Dissertação de mestrado; 2013.

Skrebsky EC. Nutrição mineral e toxidez de cádmio em ginseng brasileiro (Pfaffia glomerata (Spreng.) Pedersen). Tese de Doutorado. 2007;163:184.

Calgaroto NS. Efeitos fisiológicos do Mercúrio em plantas de Pfaffia glomerata (Spreng.) Pedersen. Dissertação de Mestrado. 2009;1–107.

Cruz ACF. ‘Interações entre acessos de fáfia (Pfaffia glomerata (Spreng.) Pedersen) com nematoides (Meloidogyne incognita e M. javanica): Aspectos fitoquímicos e estruturais. Tese de Doutorado; 2001.

Carneiro RMDG, et al. Detecção de Meloidogyne spp. em Pfaffia spp. no distrito Federal e patogenicidade de M. javanica a Pfaffia glomerata e P. paniculata. Nematologia Brasileira. 2007; 30:159–163.

Figueiredo LS, et al. Comportamento de acessos de Pfaffia glomerata (Spreng.) Pedersen (Amaranthaceae) nas condições de Campos de Goytacazes – RJ. Revista Brasileira de Plantas Medicinais. 2004; 7(1):67–72.

Flores R, et al. Micropropagation and β -ecdysone content of the Brazilian ginsengs Pfaffia glomerata and Pfaffia tuberosa . In Vitro cellular and developmental biology. Plant. 2010;46:210–217.

Leite GLD, et al. Artrópodes associados às flores de Pfaffia glomerata em Montes Claros-MG. Revista Agropecuária Técnica. 2005;26(2):178–183.

Brunner G. Gas extraction. Ed. Techniques Ingénieur. 1994;1.

Nieto A, et al. Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge. TrAC Trends in Analytical Chemistry. 2010; 29(7):752–759.

Ju ZY, Howard LR. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry. 2003;51(18):5207–5213.

Debien ICN, Meireles MAA. Supercritical fluid extraction of beta-ecdysone from Brazilian Ginseng (Pfaffia glomerata) Roots. 2014;4(2):67–73.

Leal PF, et al. Brazilian ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity. Journal of Supercritical Fluids. 2010;54(1):38–45.

Santos DT, Allbarelli J. Simulation of an integrated sustainable production of extract from Brazilian ginseng roots with a cogeneration plant simulation of an integrated sustainable production of extract from Brazilian ginseng roots. Chemical Engineering Transactions. 2012;29:91–96.

Santos DT, Meireles MA, de A. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: Processes description, state of the art and perspectives. Food Science and Technology. 2015;35(4):579–587.

Santos DT, et al. Antioxidant dye and pigment extraction using a homemade pressurized solvent extraction system. Italian Oral Surgery. 2011;1:1581–1588.

Vardanega R, et al. Techno-economic evaluation of obtaining Brazilian ginseng extracts in potential production scenarios. Journal of Food Engineering. 2017;101: 45–55.

Bitencourt RG, Queiroga CL, Montanari Í, et al. Fractionated extraction of saponins from Brazilian ginseng by sequential process using supercritical CO2 , ethanol and water. The Journal of Supercritical Fluids. 2014;92:272–281.

Debien IC, Vardanega R, Santos DT. Pressurized liquid extration as a promising economically feasible technique for the recovery of beta-ecdysone from brazilian ginseng (Pfaffia glomerata) roots. Separation Science and Tecnology. 2015; 50:1647–1657.