Conservation of a Rare Medicinal Plant: A Case Study of Griffonia simplicifolia (Vahl ex DC) Baill

Main Article Content

Musibau Muyiwa Balogun
Muhali Olaide Jimoh
Oluwatoyin Temitayo Ogundipe

Abstract

This study aimed at carrying out the vegetative propagation of Griffonia simplicifolia. This was achieved by growing nodal and stem cuttings of G. simplicifolia using two types of soils under varying environmental conditions including open area and humidity propagator. This revealed that terminal nodal stem cuttings showed the best growth forms in terms of shoot development as well as root development when subjected to open area and topsoil. However, when subjected to the humid propagator and river sand, the distal stem cuttings gave the best growth forms thereby promoting shoot and root development. Hence, it is concluded that the terminal nodes are the best parts to be used for the propagation of G. simplicifolia and the best growth medium is river sand. Furthermore, this research demonstrates that G. simplicifolia can be reproduced through macro propagation using stem cuttings and it can be seen as a basis for conservation and other breeding research on G. simplicifolia.

Keywords:
Conservation, Griffonia simplicifolia, macro propagation, stem cutting, terminal nodes.

Article Details

How to Cite
Balogun, M. M., Jimoh, M. O., & Ogundipe, O. T. (2020). Conservation of a Rare Medicinal Plant: A Case Study of Griffonia simplicifolia (Vahl ex DC) Baill. European Journal of Medicinal Plants, 31(10), 152-160. https://doi.org/10.9734/ejmp/2020/v31i1030291
Section
Original Research Article

References

Kokou K, Adjossou K, Kokutse AD. Considering sacred and riverside forests in criteria and indicators of forest management in low wood producing countries: The case of Togo. Ecol Indic. 2008;8(2):158–69.

Wunderlin RP. Reorganization of the cercideae (Fabaceae: Caesalpinioideae) r. Phytoneuron. 2010;48:1–5.

Carnevale G, Di Viesti V, Zavatti M, Benelli A, Zanoli P. Griffonia simplicifolia negatively affects sexual behavior in female rats. Phytomedicine [Internet]. 2010;17(12):987–91.

DOI:http://dx.doi.org/10.1016/j.phymed.2010.02.010

Beattie AJ, Hay M, Magnusson B, Nys R De, Smeathers J, Vincent JF V. Ecology and bioprospecting. Austral Ecol. 2011; 36(3):341–56.

Irvine FR. Woody Plants of Ghana. Oxford University Press. 1961;95–868.

Aubreville A. Flora of Gabon: Leguminosae (Caesalpinioideae). Paris, France: Museum National d’Histoire. Naturelle, Paris, France. 1968;362.

Mehta H, Mangrulkar S, Chourasia A. A review on Griffonia simplicifollia – A natural anti-depressant. Int J Phytopharm. 2015; 6(2):76–9.

Van Andel T, Myren B, Van Onselen S. Ghana’s herbal market. J Ethnopharmacol [Internet]. 2012;140(2):368–78.

DOI:http://dx.doi.org/10.1016/j.jep.2012.01.028

Muszyńska B, Łojewski M, Rojowski J, Opoka W, Sułkowska-Ziaja K. Natural products of relevance in the prevention and supportive treatment of depression. Psychiatr Pol. 2015;49(3):435–53.

Meybeck A. Use of an extract of Griffonia, in particular of Griffonia simplicifolia, in a cosmetic or dermatological composition for mitigating pigmentation of skin and skin appendages. United State Patent Application Publication (10) Pub . No .: US US 2009/0047310 A1. 2009;0–4.

Vigliante I, Mannino G, Maffei ME. Chemical characterization and DNA fingerprinting of Griffonia simplicifolia baill. Molecules. 2019;24(6).

Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: Their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacology Biol Psychiatry. 2003; 27(7):1159–72.

Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses [Internet]. 2013; 80(6):791–4.

DOI:http://dx.doi.org/10.1016/j.mehy.2013.03.013

Carnevale G, Di Viesti V, Zavatti M, Zanoli P. Anxiolytic-like effect of Griffonia simplicifolia Baill. seed extract in rats. Phytomedicine [Internet]. 2011;18(10): 848–51.

DOI:http://dx.doi.org/10.1016/j.phymed.2011.01.016

Lemaire PA, Adosraku RK. An HPLC method for the direct assay of the serotonin precursor, 5-hydroxytrophan, in seeds of Griffonia simplicifolia. Phytochem Anal. 2002;13(6):333–7.

Lescar J, Loris R, Mitchell E, Gautier C, Chazalet V, Cox V, et al. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B4 and molecular basis for metal binding and monosaccharide specificity. J Biol Chem. 2002;277(8):6608–14.

Jimoh MO, Afolayan AJ, Lewu FB. Antioxidant and phytochemical activities of Amaranthus caudatus L . harvested from different soils at various growth stages. Sci Rep. 2019;9:12965.

Jimoh MO, Afolayan AJ, Lewu FB. Therapeutic uses of Amaranthus caudatus L . Trop Biomed. 2019;36(4):1038–53.

Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol. 2008; 507(1):1031–52.

Zhu K, Huesing JE, Shade E, Bressan RA, Hasegawa PM, Murdock L. An lnsecticidal N-Acetylglucosamine-Specific Lectin. Plant Physiol. 1996;110:195–202.

Amujoyegbe BJ, Agbedahunsi JM, Amujoyegbe OO. Cultivation of medicinal plants in developing nations: means of conservation and poverty alleviation. Int J Med Aromat Plants. 2012;2(2):345–53.

Işik K. Rare and endemic species: Why are they prone to extinction? Turk J Botany. 2011;35(4):411–7.

Soundy P, Mpati KW, du Toit ES, Mudau FN, Araya HT. Influence of cutting position, medium, hormone and season on rooting of fever tea (Lippia javanica L.) stem cuttings. Med Aromat Plant Sci Biotechnol. 2008;2:114–6.

Makinde EA, Ayeni LS, Ojeniyi SO. Effects of organic, organomineral and NPK fertilizer treatments on the nutrient uptake of Amaranthus cruentus (L.) on two soil types in Lagos, Nigeria. J Cent Eur Agric. 2011;12(1):114–23.

Leakey RRB, Simons AJ. The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agrofor Syst. 1998; 38:165–176.

Jimoh MO, Afolayan AJ, Lewu FB. Heavy metal uptake and growth characteristics of Amaranthus caudatus L . under five different soils in a controlled environment. Not Bot Horti Agrobot. 2020;48(1):417–25.

Hartmann HT, Kester DE, Davies FT, Geneve RL. Hartmann and Kester ’ S Plant Propagation. In: Hartmann & Kester’s Plant Propagation: Principles and Practices. 8th Ed. Edinburgh Gate, Harlow: Pearson Education Limited. 2010;928.

Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163(1):161–79.

Farrell C, Ang XQ, Rayner JP. Water-retention additives increase plant available water in green roof substrates. Ecol Eng [Internet]. 2013;52:112–8.

DOI:http://dx.doi.org/10.1016/j.ecoleng.2012.12.098

Boshoff G, Duncan J, Rose PD. The use of microalgal biomass as a carbon source for biological sulphate reducing systems. Water Res. 2004;38(11):2659–66.

Zalesny RS, Hall RB, Bauer EO, Riemenschneider DE. Shoot position affects root initiation and growth of dormant unrooted cuttings of Populus. Silvae Genet. 2003;52(5–6):273–9.

Sadhu MK. Plant propagation. New Age International (P) Ltd. New Delhi. 1989;287.

Dolor D. Effect of propagation media on the germination and seedling performance of Irvingia wombolu (Vermoesen). Am J Biotechnol Mol Sci. 2011;1(2):51–6.

Okunomo K, Ogisi DO, Bosah BO. Effect of growth media on germination and seedling growth of Persea americana (Mill.). Journal of Food, Agriculture & Environment. 2009;7(1):111-113.

Brady CN, Weil RR. The nature and properties of soils. Prentice-Hall, N. Jersey. 1999;881.

Tisdale SL, Nelson NL. Soil Fertility and Fertilizers. Mac Millan Co. Inc. New York; 1975.