Cactaceaes of the Brazilian Semiarid: Source of Bioactive Compounds

Leila Magda Rodrigues Almeida

Laboratory of Biochemistry, Biotechnology and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil, Avenida Reitor Miguel Calmon s/n, 40160-100, Salvador-Bahia, Brazil.

Luzimar Gonzaga Fernandez *

Laboratory of Biochemistry, Biotechnology and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil, Avenida Reitor Miguel Calmon s/n, 40160-100, Salvador-Bahia, Brazil.

*Author to whom correspondence should be addressed.


The semiarid region of Brazil stands out as one of the spaces with the highest diversity of plant species in the world, and the Cactaceae family the one that best represents the Brazilian semiarid. However, although there are many species of cacti in Brazil, their chemical potential has yet to be discovered. Given this, the present review aims to record the bioactive metabolites of native cactaceaes or not in Brazil, encompassing a description of its habitat and traditional uses. Compilations of ethnobotanical studies point to the importance of cacti species in the daily life of local cultures. Cactaceaes are used for food, economic, ornamental, and mystical purposes, among others, and stand out for their importance in traditional medicine, used to treat various diseases. Bioactive compounds in this family belong mainly to alkaloid groups, such as betalain, phenolic acids, terpenes and fatty acids. This review displays the relevance of the Cactaceae family in the face of the remarkable production of bioactive compounds.

Keywords: Cacti, ethnobotanical, bioactive metabolites, caatinga

How to Cite

Almeida, L. M. R., & Fernandez, L. G. (2024). Cactaceaes of the Brazilian Semiarid: Source of Bioactive Compounds. European Journal of Medicinal Plants, 35(3), 17–32.


Download data is not yet available.


Cavalcante A, Teles M, Machado M. Cacti from the Semi-Arid region of Brazil: illustrated guide. National Semiarid Institute – INSA; 2013.

Zappi D, Taylor NP. Diversity and endemism of Cactaceae in the Espinhaço Range. Megadiversity. 2008;4(1):111-116.

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Plant systematics: a phylogenetic approach (3th ed.). Artmed, Porto Alegre; 2009.

Duke JG. The Northeast and xerophilic crops. 4th edition. Fortaleza: Banco do Nordeste do Brasil; 2004.

Zappi D, Taylor NP. Cactaceae in Flora of Brazil. Rio de Janeiro Botanical Garden; 2020. Accessed 25 March 2023. Available:

Barroso GM, EF Guimarães, Ichaso CLF, Costa CG, Peixoto AL. Systematics of angiosperms in Brazil. Rio de Janeiro: Technical and Scientific Books Ed; 1978.

Silva VA, Diversity of use of cacti in northeastern Brazil: A review. Gaia Scientia. 2015;9(2):175-182.

Andrade CTS, Marques JGW, Zappi DC. Use of cacti by Bahian country people. Connective types to define utility categories. Sitientibus, Biological Sciences Series. 2006a;6:3-12.

Lucena CM, de Lucena RFP, Costa GM, Carvalho TKN, da Silva CGG, da Nóbrega ARR, et al. Use and knowledge of Cactaceae in Northeastern Brazil. J. ethnobiol. ethnomed. 2013;9(1):1-11. Available:

Lucena CM, Carvalho TK, Ribeiro JE, Quirino ZG, Casas A, Lucena RFP. Traditional botanical knowledge about cacti in semi-arid Brazil. Gaia scientia. 2015;9(2):77-90.

Bartwal A, Mall R, Lohani P, Guru SK, Arora S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regulation. 2013;32:216–232.

Britton NL, Rose JN. The Cactaceae: descriptions and illustrations of plants of the cactus Family, Courier Corporation. 1963;3:263.

Souza VC, Lorenzi H. Systematic botany: Illustrated guide for identifying Angiosperm families in the Brazilian flora, based on APG II. 2nd edition. Nova Odessa: Instituto Plantarum; 2005.

Ortega-Baes P, Sühring S, Sajama J, Sotola E, Alonso-Pedano M, Bravo S, Godínez-Alvarez H. Diversity and conservation in the cactus family. Desert plants. 2010;157-173. Available:

Trout K. Cactus chemistry by species (1th ed.). Mydriatic Productions; 2014.

Germano RH, Barbosa HP, Costa RG, Medeiros AN, Carvalho FFR. Assessment of the chemical and mineral composition of cacti in the semi-arid region of Paraíba. Technical agriculture. 1999;20(1):51-57.

Millar HA, Siedow JN, Day D. Respiration and photorespiration. In: Buchanan BB, Gruissem W, Jones RL, editors. Biochemistry and Molecular Biology of Plants. Berkeley: John Wiley & Sons; 2015.

Das G, Lim KJ, Tantengco OAG, Carag HM, Goncalves S, Romano A., et al. Cactus: Chemical, nutraceutical composition and potential bio‐ pharmacological properties. Phytother Res. 2020;35(3):1248-1283. Available:

Lima-Nascimento AM, Bento-Silva JS, de Lucena CM, de Lucena RFP. Ethnobotany of native cacti in the northeast region of Brazil: Can traditional use influence availability? Minutes bot. bras. 2019;33 (2):50–359. Available:

Gheribi R, Khwaldia K. Cactus mucilage for food packaging applications. Coatings. 2019;9:1-19. Available:

Andrade CTS, Marques JGW, Zappi DC. Medicinal use of cacti by Bahian country people. Rev Bras Plantas Med. 2006b; 8(3):36-42.

Shetty AA, Rana M, Preetham S. Cactus: a medicinal food. J. Food Sci. Technol. 2012;49(5):530–536. Available:

Mizrahi Y. Cereus peruvianus (Koubo) new cactus fruit for the world. Rev. Bras. Frutic. two014;36(1):68-78. Available:

Silva SÉ, de Oliveira AJB, da Silva MDFP, Mangolin CA, Gonçalves RAC. Cereus hildmannianus (K.) Schum. (Cactaceae): Ethnomedical uses, phytochemistry and biological activities. J. Ethnopharmacol. 2021;264:113339. Available:

Agostini-Costa ST. Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review. Food Chem. 2020; 327:126961. Available:

Meiado MV, Machado MC, Zappi DC, Taylor NP, Siqueira FJA. Ecological Attributes, Geographic Distribution and Endemism of Cacti From the São Francisco Watershed. Gaia Scientia. 2015; 9(2):40-53. Available:

IUCN - International Union for the Conservation of Nature. Red list of threatened species. Accessed 02 March 2024. Available:

Santos-Díaz MS, Camarena-Rangel NG. Cacti for production of metabolites: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:8657–8667. Available:

Santana MCD, Santos PAA, Ribeiro ADS. Levantamento etnobotânico da família Cactaceae no estado de Sergipe. Revista Fitos. 2018;12(1):41-53. Available:

Betancourt C, Cejudo-Bastante MJ, Heredia FJ, Hurtado N. Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactos fruit. Food Res. Int. 2017;101:173–179. Available:

Lanuzza F, Occhiuto F, Monforte MT, Tripodo MM, Angelo VD, Galati EM. Antioxidant phytochemicals of Opuntia ficus-indica (L.) Mill. cladodes with potential anti-spasmodic activity. Pharmacogn. Mag. 2017; 13(Suppl 3): S424–S429. Available:

Wright CR, Setzer WN. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing on Catalina Island, California. Nat. Prod. Res. 2014;28(3): 208–211. Available:

Benattia FK, Arrar Z, Dergal F. Chemical composition and nutritional analysis of seeds cactus (Opuntia ficus-indica. L). Curr. Nutr. Food Sci. 2019;15:394–400. Available:

Štarha R, Chybidziurová A, Lacný Z. Constituents of Turbinicarpus alonsoi Glass & Arias (Cactaceae). Acta Univ. Palacki. Olomuc. 1999;38: 71–73.

Bruhn JG, Bruhn C. Alkaloids and ethnobotany of mexican peyote cacti and related species. Econ. Bot. 1973;27:241–251.

Schwarz A, Medeiros I, Mourão C, Queiroz F, Pugmacher S. Phytochemical and toxic analysis of an ethanol extract from Cereus jamacaru. Toxicol. Lett. 2010;196:S344. Available:

Davet A, Carvalho JLS, Dadalt RC, Vituoso S, Dias JFG, Miguel MD, Miguel OD. Cereus jamacaru: a non bu{ered LC quantication method to nitrogen compounds. Chroma. 2009; 69(S2):245–247. Available:

Medeiros IU, Medeiros RA, Bortolin RH, Queiroz FM, Silbiger VN, Pflugmacher S, Schwarz A. Genotoxicity and pharmacokinetic characterization of Cereus jamacaru ethanolic extract in rats. Biosci. Rep. 2019;39(1):BSR20180672. Available:

Santos JF, Goncalves JLC, Jesus RA, Lima NPC, Scher R, de Oliveira Junior AM, da Silveira Moreira JDJ. Bioactive pro^le of mandacaru fruits and cytotoxicity against the L929 cell line. J. Med. Plant Re. 2021; 15(5):215–225. Available:

Melgar B, Dias MI, Ciric A, Sokovic M, Garcia-Castello EM, Rodriguez-Lopez AD. By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Ind Crops Prod. 2017; 107:353-359. Available:

Lee EH, Kim HJ, Song YS, Jin C, Lee KT, Cho J, Lee YS. Constituents of the stems and fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res. 2003;26(12): 1018–1023. Available:

Thi Tran TM, Nguyen Thanh B, Moussa-Ayoub TE, Rohn S, Jerz G. Profiling of polar metabolites in fruits of Opuntia stricta var. dillenii by ion-pair high-performance countercurrent chromatography and off-line electrospray mass-spectrometry injection. J Chromatogr A; 2019. Available:

Silva-Barbosa A, Goodger JQD, Woodrow IE, Pereira de Andrade A, Alcântara-Bruno RL, Souza-Aquino I. Elucidation of the betalainic chromoalkaloid profile of Pilosocereus catingicola (Gürke) Byles & Rowley subsp. Salvadorensis (Werderm.) Zappi (Cactaceae) from Paraíba, Brazil. Afr J Agric Res. 2027;12:1236–1243. Available:

Kaur G, Thawkar B, Dubey S, Jadhav P. Pharmacological potentials of betalains. J. Complement. Integr. Med. 2018;15:1–9. Available:

Hussain EA, Sadiq Z, Zia-Ul-Haq M. Betalains: Biomolecular aspects. Suiça: Springer International Publishing; 2018.

García-Cruz L, Dueñas M, Santos-Buelgas C, Valle-Guadarrama S, Salinas-Moreno Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chem. 2017;234:111–118. Available:

Fathordoobady F, Manap MY, Selamat J, Singh AP. Development of supercritical fluid extraction for the recovery of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel: a source of natural red pigment with potential antioxidant properties. Int. Food Res. J. 2019;26:1023–1034.

Wybraniec S, Nowak-Wydra B. Mammillarinin: A new malonylated betacyanin from fruits of Mammillaria. J. Agric. Food Chem. 2007;55(20):8138–8143. Available:

Gonçalves ASM, Peixe RG, Sato A, Muzitano MF, de Souza ROMA, de Barros MT. Pilosocereus arrabidae (Byles & Rowley) of the Grumari sandbank, RJ, Brazil: Physical, chemical characterizations and antioxidant activities correlated to detection of flavonoids. Food Res. Int. 2015;70:110–117. Available:

Mena P, Tassotti M, Andreu L, Nuncio-Jáuregui N, Légua P, Del Rio D, Hernández F. Phytochemical characterization of diferente prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Res. Int. 2018;108:301–308. Available:

Osorio-Esquivel O, Ortiz-Moreno A, Garduño-Siciliano L, Álvarez VB, Hernández-Navarro MD. Antihyperlipidemic effect of methanolic extract from Opuntia joconostle seeds in mice fed a hypercholesterolemic diet. Plant Foods Hum. Nutr. 2012;67:365–370. Available:

Cha MN, Jun HI, Lee WJ, Kim MJ, Kim MK, Kim YS. Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruitFood Sci. Biotechnol. 2013;22:523-529.

Astello-García MG, Cervantes I, Nair V, del Socorro SDM, Reyes-Agüer A, Guéraud F. et al. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 2015;43:119–130.

Ferreres F, Grosso C, Gil-Izquierdo A, Valentão P, Mota AT, Andrade PB. Optimization of the recovery of high-value compounds from pitaya fruit by products using microwave-assisted extraction. Food Chem. 2017;230:463–474. Available:

Ammar I, Salem MB, Harrabi B, Mzid M, Bardaa S, Sahnoun Z, et al. Anti-inflammatory activity and phenolic composition of prickly pear (Opuntia ficus-indica) flowers. Ind. Crops Prod. 2018;112: 313–319. Available:

Kim HK, Tan CP, Karim R, Ariffin AA, Bakar J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010;119(4):1326–1331. Available:

Cabañas-García E, Areche C, Jáuregui-Rincón J, Cruz-Sosa F, Pérez-Molphe BE. Phytochemical profiling of Coryphantha macromeris (Cactaceae) growing in greenhouse conditions using ultra-high-performance liquid chromatography–tandem mass spectrometry. Molecules. 2019;24(4):705. Available:

Salt TA, Tocker JE, Adler JH. Dominance of Δ5-sterols in eight species of the Cactaceae. Phytochem. 1987;26(3):731–733. Available:

Jiang J, Li Y, Chen Z, Min Z, Lou F. Two novel C29-5β-sterols from the stems of Opuntia dillenii. Steroids. 2006;71:1073–1077

Chahdoura H, Barreira JCM, Barros L, Santos-Buelga C, Ferreira ICFR, Achour L. Phytochemical characterization and antioxidante activity of Opuntia microdasys (Lehm.) Pfeiff flowers in diferente stages ofmaturity. J. Food Funct. 2014;9:27–37. Available:

Núñez-Gastélum JA, González-Fernández R, Hernández HÁ, Campas-Baypoli ON, Rodríguez-Ramírez R, Lobo-Galo N, Valero-Galván J. Morphological characteristics, chemical composition and antioxidant activity of seeds by four wild Opuntia species from north of Mexico. J. Prof. Assoc. Cactus Dev. 2018;20:23–33.

Kinoshita K, Koyama K, Takahashi K, Kondo N, Yuasa H. New triterpenes from Trichocereus bridgesii. J. Nat. Prod. 1992; 55(7):953–955. Available:

Ye Y, Kinoshita K, Koyama K, Takahashi K, Kondo N, Yuasa H. New triterpenes from Machaerocereus eruca. J. Nat. Prod. 1988;61(4), 456–460. Available:

Kakuta K, Baba M, Ito S, Kinoshita K, Koyama K, Takahashia K. New triterpenoid saponins from cacti and anti-type I allergy activity of saponins from cactus. Bioorg. Med. Chem. Lett. 2012;22:4793–4800. Available:

Sri Nurestri AM, Sim KS, Norhanom AW. Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) leaves. J. Biol. Sci. 2009;9:488–493. Available:

Ciriminna R, Delisi R, Albanese L, Meneguzzo F, Pagliaro M. Opuntia ficus-indica seed oil: Biorefinery and bioeconomy aspects. Eur. J. Lipid Sci. Technol. 2017;119: 1700013. Available:

Imai T, Okazaki S, Kinoshita K, Koyama K, Takahashi K, Yuasa H. Triterpenoid saponins from cultural plants of Stenocereus stellatus (Cactaceae). J. Nat. Med. 2006;60:49–53.

Okazaki S, Kinoshita K, Koyama K, Takahashi K, Yuasa H. New triterpene saponins from Stenocereus eruca (Cactaceae). J. Nat. Med. 2007;61:24–29.

Murillo E, Melendez-Martinez A, Portugal F. Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem. 2010;122(1):167–172. Available:

Martin AA, Freitas RA, Sassaki GL, Evangelista PHL, Sierakowski MR. Chemical structure and physical-chemical properties of mucilage from the leaves of Pereskia aculeata. Food Hydrocolloids. 2017;70:20–28. Available: