Review on the Ethnobotany, Phytochemical and Pharmacological Profile of *Senna occidentalis* L. (*Fabaceae*): Potential Application as Remedy in the Treatment of *Dysmenorrhea*

Alain S-P. Kabasele Kalombo a, Florent Biduaya Mukeba b,c*, Assumani Zabo Idrissa d, Jean-Paul Nzambi Divengi d, Patience Lunkondo Mbuyi d, Jean-Pierre K. Kayembe e,f, and David Dago N'Da g

a Department of Biology, Faculty of Sciences, Pedagogical University of Kananga, Kananga, Democratic Republic of Congo.
b Department of Geography, Geostrategy, Environment and Spatial Planning, Center of Research of Human Sciences, Kinshasa, Democratic Republic of the Congo.
c Department of Biology, Faculty of Science, National Pedagogical University, Kinshasa, Democratic Republic of the Congo.
d Research Unity of Pedagogy and Health, Interdisciplinary Research Center of the National Pedagogical University, Kinshasa, Democratic Republic of the Congo.
e Department of Chemistry, Faculty of Sciences, Pedagogical University of Kananga, Democratic Republic of Congo.
f Catalysis and Synthesis Research Group, Research Focus Area for Chemical Resource Beneficiation (CRB), North-West University, Potchefstroom 2522, South Africa.
g Pharmaceutical Chemistry, Center of Excellence, for Pharmaceutical Sciences, School of Pharmacy, Faculty of Health Science, North-West University, South Africa.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors AKK and J-P KK designed the study, wrote the methodology and wrote the first draft of the manuscript. Authors AKK, FBM, AZI, PLM, JPND, J-P KK, and DDN, managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2022/v33i630472

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/87319

Received 09 March 2022
Accepted 19 May 2022
Published 28 May 2022

Corresponding author: E-mail: florent.mukeba@upn.ac.cd;
ABSTRACT

Senna occidentalis L. has been used in several traditional medicines against various diseases and this is based on its botanical, ethnopharmacology, and phytochemistry profiles. This powerful herb is recognized for its antibacterial, antifungal, antidiabetic, anticancer, antimutagenic, protective, and inflammatory hepatic activity. Multiple chemical compounds, including achrosine, aloe--emodin, emodin, anthraquinones, etc., have been isolated from this plant. The results of this bibliographic research thus presented in this review have demonstrated the ability of certain extracts from *S. occidentalis* L. to lower the lipid peroxide content, the activity of gamma-glutamyl transpeptidase and phospholipase A2 in exudates of the granuloma of cotton pellets, thus resulting in a reduced availability of arachidonic acid, an important precursor in the biosynthesis of prostaglandins, which are the only likely source and/or cause of dysmenorrhea. Thus, based on its phytochemical profile and its pharmacological properties, it is therefore suggested that *S. occidentalis* would be a potential and effective remedy in the treatment of dysmenorrhea.

Keywords: *Senna occidentalis* L.; ethnobotany; pharmacological properties; prostaglandins; dysmenorrhea.

1. INTRODUCTION

1.1 Background

Since ancient times, plants have been used by human beings for various needs including food, and health care. To date, the nature still providing a more reliable source of medicaments. Almost 40% of the drugs currently available are direct or indirect derivatives of natural plant precursors [1].

The use of herbal remedies and other materials is an integral part of African culture. Contrary to popular belief that medicinal plants usually have few side effects and better compatibility with the human body [2], acute or chronic toxicity may result from their use. However, traditional healers are not always aware of this toxicity. They often use medicinal plants in most cases, without a deep knowledge of their side effects, including their toxicities, whereas some plants may cause serious poisoning, especially those containing pyrrolizidine alkaloids.

Natural plants have been used traditionally as medicines in the pharmacopeia, for decades. Most of the world's populations depend on indigenous plants therapies owing to their safety [3,4]. Many therapeutic agents derived from plants and used in modern medicine have been resourced from natural (products) plants [5]. Most these plants have a variety of phytopharmaceuticals chemicals, with so much important applications in the fields of agriculture, human and veterinary medicine. They play a major role in the development of new drugs for the treatment and prevention of several diseases [6]. Therefore, it is very important to have sufficient knowledge of herbs not only because of their widespread use but also because they have the potential to cause toxic reactions or to interact with other medicines. In traditional medicine, Cassia species are well known for their laxative and purgative properties, and for the treatment of skin diseases, and hepatotoxicity.

The phytochemical study of medicinal plants can therefore contribute to the regulation of empirical use, consumption patterns, with scientifically proven efficacy, and optimal cultural acceptability. Worldwide, pharmacological studies on plant extracts, secondary metabolisms, active ingredients, or biomolecules have proven to be effective on parasite, larvae, etc. [7,8].

Based on an in-depth study of the literature, *S. occidentalis* L. has many potentials to be considered as a medicinal plant and useful for various diseases. Regarding the phytochemistry of this plant, it has been demonstrated according to a scientific approach that the plant should be used as a drug [4]. It is also important to note that the phytochemical and biological effectiveness of the plant depends mainly on its geographic origin. More research is needed to use phytochemical compounds in the pharmaceutical industry as a substitute for medicine [4].
1.2 Classification

Reign: Plantae
Clade: Angiosperms
 Clade: True dicots
 Clade: Nucleus of the true dicots
 Clade: Rosidae
 Clade: Fabidae
 Order: Fabales
 Family: Fabaceae
 Subfamily: Caesalpiniaceae
 Tribe: Cassieae
 Subtribe: Cassiinae
 Gender: Senna
 Species: Senna occidentalis (L.) Link, 1829
 Synonym: Cassia occidentalis (L.)
 (http://www.theplantlist.org/tpl1.1/record/ild-1086)

1.3 Description

Senna occidentalis is an erect sub-shrub or herbaceous plant, short-lived perennial (sometimes annual), with foliage giving off a characteristic fetid odor, up to 2 meters tall, but generally lower (50 cm at 1 meter), with a taproot.

The leaves, alternate, glabrous, slightly pubescent on the underside, carried by a short petiole, are compound paripinnate and 10 to 15 cm long. They have 4 to 6 pairs of oval to elliptical leaflets, 3 to 8 cm long and 15 to 40 mm wide. At the base of the petiole, there are two narrow triangular stipules, 2 to 4 mm long, early deciduous.

The flowers, 1.5 to 3 cm in diameter, solitary or grouped in axillary clusters of 2 to 5 flowers at the end of the branches, have a calyx formed of 5 green, elliptical sepals, a corolla comprising 5 oval petals, free, yellow in colour, around 13 mm long, 10 unequal stamens, 6 of which are fertile (2 large and 4 small) and 4 staminodes, a linear, arcuate, glabrous ovary, bearing a recurved, hairy stigma.

The fruit is an oblong, slightly arched, flattened, sepalate pod, 10-15 cm long by 7-8 mm wide. The pod, beige when ripe, is ascending and swollen at the level of the seeds and opens along both edges. It contains 20 to 60 seeds arranged in a line and separated by a thin membrane. You can hear the seeds when shaking the pod. The oblong, flattened, brown seeds are 4 mm long and 3 mm wide.

1.4 Distribution and Habitat

The original range of *Senna occidentalis* is in tropical America from Mexico in the north to Argentina in the south. This area includes Central America and the Antilles, and in South America countries such as Brazil (Parana, Rio Grande do Sul, Santa Catarina), Venezuela, Guyana, Colombia, Ecuador, Uruguay and Paraguay.

The species is widely cultivated in tropical countries and has become naturalized in all continents: in Africa (from Libya to South Africa and from Senegal to Ethiopia), in temperate Asia (Saudi Arabia, Yemen, Iran, Iraq, Lebanon, China), in tropical Asia: Indian subcontinent, in Southeast Asia (Indonesia, Papua New Guinea, Solomon Islands, Cambodia, Laos, Thailand, Vietnam, Malaysia, Philippines, Singapore), as well as in Australia and Oceania (Hawaii, Marshall Islands, Micronesia, Northern Mariana Islands, Palau, French Polynesia, Pitcairn, Fiji, Nauru, New Caledonia, Niue, Samoa, Tonga). The plant has also become naturalized in some states of the United States (Alabama, Arkansas, Florida, Georgia, Mississippi, North Carolina, South Carolina, Oklahoma, Tennessee, Texas, Virginia).

2. METHODOLOGY

In this study, the research was carried on the relevant literature on *Senna occidentalis*, a plant species traditionally used as a drug. Plant databases including plantlist, ScienceDirect, PubMed, Google Scholar, and Scopus, have been used to retrieve articles on *S. occidentalis* L., which is the scientific name of this plant. This species has been used as a keyword for research, as well as the terms Ethnobotany, Phytochemistry, Pharmacological Properties, Prostaglandins, and Dysmenorrhea.
The naturally isolated chemical structures of this plant, its present compounds were designed using the ChenBioDraw Ultra 12.0 software. Finally, the bibliographic references were processed using the bibliographic software "Mendeley".

3. ETHNOBOTANY

S. occidentalis (*Fabaceae*) is a plant used in traditional medicine, with significant medicinal values. This plant is known by various names: Sene Café, Casse fétide and Café noir. *S. occidentalis* grains germinate in all tropical, and subtropical regions, including the United States to the East, Africa, Asia, and Australia [9,10]. *S. occidentalis* is considered as common weed, found throughout India up to an altitude of 1500 m [11] from Jammu-Kashmir to Kanyakumari. It is used differently in traditional medicine [12-14]. Despite a large amount of *S. occidentalis* consumption by animals and humans, certain effects are observed due to the toxicity of the seeds and leaves of this plant [15-18]. *S. occidentalis* is widely consumed as a substitute for coffee by local populations of India [19].

In a study by Humphry and his collaborators [20], farmers consider *S. occidentalis* to be an inedible herb. These authors indicate that almost 93% of villagers protect the plant and do not subtract it from their fields when they are doing the binding [21]. *S. occidentalis* is called Ran-tarota by residents of the Nasik district of Maharashtra (India). The inhabitants of this region use an infusion of a mixture of the roots of *S. occidentalis*, *Caesalpinia sepiaria*, and *Azadirachta indica*, for the treatment of women having problems of white losses.

In Mali, a traditional recipe made up of three herbs is used in the fight against malaria, consisting of *S. occidentalis* leaves, Lippia knight leaves, and olerace Spilanthes capitules [22]. The decoction made on the basis of a mixture of *S. occidentalis* and black pepper is widely used against filariasis [23]. New-born babies are bathed from the 7th, 12th, and 21st days by the inhabitants of the hills of Malyagiri in particular the Tarla people of the district of Dhenkanal of Orissa (India), which use a decoction formed of 15 leaves of each plant species of *S. occidentalis*, *Glycosmis pentaphylla* and *Vitex negundo* to immunize newborns against skin diseases. *S. occidentalis* is used against constipation. In addition, its roots, leaves, and grains are used as a purgative [24].

![Fig. 1. *Senna occidentalis* L. plant images Adapted from:](https://www.google.co.za/search?q=cassia+occidentalis+plant&tbm=isch&source=iu&ictx=1&fir=kf4LQtFNeg0w_M%252Cx7ABujqjylM30M%252C_%253BHkpLuo7eGrTAmM%252CsIdhSMFnQ9SBM%252C_%253BOM8rL; visited on the 10/04/2022).

4. PHYTOCHEMISTRY

Fluorescence spectrophotometry data show that the plant is rich in minerals, in particular, Fe, Ca, K, Mn, Mg, Zn, Cu, Na, P, and S as indicated in (Table 1) [25-28].
Table 1. Mineral and potential composition of metals contained in *S. occidentalis* [27]

<table>
<thead>
<tr>
<th>No.</th>
<th>Mineral composition</th>
<th>Quantity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe</td>
<td>11.036</td>
</tr>
<tr>
<td>2</td>
<td>Ca</td>
<td>2.69</td>
</tr>
<tr>
<td>3</td>
<td>Mn</td>
<td>2.39</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>2.36</td>
</tr>
<tr>
<td>5</td>
<td>Mg</td>
<td>1.54</td>
</tr>
<tr>
<td>6</td>
<td>Zn</td>
<td>1.24</td>
</tr>
<tr>
<td>7</td>
<td>Cu</td>
<td>0.74</td>
</tr>
<tr>
<td>8</td>
<td>Na</td>
<td>0.58</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>0.54</td>
</tr>
<tr>
<td>10</td>
<td>S</td>
<td>0.29</td>
</tr>
<tr>
<td>11</td>
<td>Pb</td>
<td>< 0.005 ppm</td>
</tr>
<tr>
<td>12</td>
<td>Hg</td>
<td>< 0.005 ppm</td>
</tr>
<tr>
<td>13</td>
<td>Cd</td>
<td>< 0.005 ppm</td>
</tr>
</tbody>
</table>

S. occidentalis is very rich in Fe with 11.036%. Ca, Mn, and K represent respectively 2.63, 2.39, 2.36% whereas other items are in a small percentage. From these data, it can be deduced that *S. occidentalis* has a high Fe content and can therefore be used in the treatment of anemia. Ca and P deficiency causes the classic bone symptoms associated with rickets, such as arched legs, struck knees, spine curvature, and pelvic and thoracic deformities. Mg plays an important role in the structure and function of the human body. Iron, Zn, Cu, and Mn play an important role in improving the antioxidant system. The positive impact of Zn supplementation on the growth of some stunted children and on the prevalence of certain childhood illnesses such as diarrhea. The deficiency of Zn is likely to be a major public health problem, particularly in developing countries. [25, 29].

According to Food and Agriculture Organization (FAO), research has predicted that around 20% of the world population may be at risk of Zn deficiency with an average daily intake of < 70 mg/d [30]. These discoveries stimulate the culture of *S. occidentalis* on a large scale to relieve Fe and Zn deficiencies in the local community. The concentration of Pb in plant species is 2 to 6 mg/L [31]. Preliminary phytochemical analysis on an organic extract of *S. occidentalis* has revealed the presence of alkaloids, carbohydrates, flavonoids, phenolic compounds, tannins, and lignins [27], in the aerial part of *S. occidentalis* (Table 2) [27,32].

Flavonoids recorded a higher percentage of yield (2.45 mg/g) compared to alkaloids (1.56 mg/g), lignin (0.34 mg/g), tannins (0, 21 mg/g) and phenols (0.16 mg/g) per sample. The main chemicals content of *S. occidentalis* include achrosine, aloe-emodin, emodin [33], anthraquinones (Fig. 2), anthrones, apigenin, aurantiobutusine, campesterol, casseholline, chryso-obtusine, [34], islandicin, kaempferol, lignoceric acid, linoleic acid, linolenic acid, mannotol, mannpyranosyl, matteucinol, obtusifolin, obtusine, cieolec acid [35], phsiccoin, rhamnosides, rhein, rubufusarine, sitosterols, tannins, and xanthorine [34,35,36]. A study on *S. occidentalis* indicates that the nature and quantity of the phytochemical compounds of this species vary according to the climate. In Ivory Coast, for example, the stems, leaves, and bark of the roots of this plant contain a small number of saponins while there are no alkaloids, sterols, triterpenes, quinine, tannins, and flavonoids. On the contrary in Ethiopia, large quantities of alkaloids have been found in stems, leaves, and fruits [37].

Table 2. Major estimate of the Phytoconstituents of *S. occidentalis* [27]

<table>
<thead>
<tr>
<th>No.</th>
<th>Phytoconstituents of S. occidentalis</th>
<th>Quantity (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flavonoid</td>
<td>2.45</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloid</td>
<td>1.56</td>
</tr>
<tr>
<td>3</td>
<td>Lignine</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>Tannin</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>Phenol</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 3. Nutritional value of *S. occidentalis* [27]

<table>
<thead>
<tr>
<th>No.</th>
<th>Nutritional value</th>
<th>Quantity (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy value</td>
<td>34.44</td>
</tr>
<tr>
<td>2</td>
<td>Raw fiber</td>
<td>5.69</td>
</tr>
<tr>
<td>3</td>
<td>Free amino acids</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>Carbohydrates</td>
<td>1.38</td>
</tr>
<tr>
<td>5</td>
<td>Proteins</td>
<td>0.49</td>
</tr>
<tr>
<td>6</td>
<td>Total fat</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>Cholesterol</td>
<td>0.03</td>
</tr>
<tr>
<td>8</td>
<td>Thiamine 6.9</td>
<td>0.0069</td>
</tr>
<tr>
<td>9</td>
<td>Niacin</td>
<td>0.0126</td>
</tr>
<tr>
<td>10</td>
<td>Riboflavin</td>
<td>0.0715</td>
</tr>
<tr>
<td>11</td>
<td>Catalase</td>
<td>0.0098</td>
</tr>
<tr>
<td>12</td>
<td>Lipase</td>
<td>0.0136</td>
</tr>
<tr>
<td>13</td>
<td>Amylase</td>
<td>0.0108</td>
</tr>
<tr>
<td>14</td>
<td>Alcaline Phosphatase</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>Phosphatase acid</td>
<td>10.8</td>
</tr>
</tbody>
</table>

S. occidentalis has been found to be a valuable source of dietary fiber in human food. The other nutritional constituents found are free amino acids and carbohydrates. Total fat and cholesterol levels are also low and represent only 0.03 mg/g. In addition to this, the plant is rich in vitamins, such as thiamine, niacin, and riboflavin, and enzymes, especially catalase, lipase, amylase, alkaline phosphatase, and acid phosphatase (Table 3) [25,27,29].

Research has shown that *S. occidentalis* is very rich in energy with 34.44mg/g in a sample. Vitamins such as Niacin are more represented with 0.0126 mg/g [27].

4.1 Whole Plant

The 3,2-dihydroxy-7,8, 4-trimethoxy flavone-5-β-D-allopyranoside compounds (Fig. 3) were isolated throughout the plant from the ethanol extracts. Based on chemical evidence and the spectroscopic method, the chemical structures have been established. Three new flavonoids were isolated from the aerial part of the plant. These were C-glycosidics, Cassia occidentalines A, B, and C with 3-keto sugar [39].

Fig. 3. The isolated Phytochemical compounds of the Plante of *S. occidentalis*
4.2 Roots

In has been established by researchers that the roots of *S. occidentalis* may contain about 1.9-4.5% of the free anthraquinones [33]. Emodine, 1,8-dihy-droxyanthraquinone, and flavonoid quercetin have also been identified. Samples of young roots were found without chrysophanol have also been reported in the roots of *S. occidentalis* [40]. Later, the sennosiolone which was also previously identified but wrongly assigned, turned out to be epinolin as established by Kudav et al., in 1947 [34]. However, Rheine's study revealed also the presence of 1,7-dihydroxy-3-méthyl xanthone [34,41]. In addition to pinseline [41], several 1,4, 5-trihydroxyanthraquinones from root samples such as islandicin, helminthosporin and xanthorine were extracted [35,42] and have shown that the roots contain rhein and aloe-emodine (both free) and glycosidic. Two new derivatives of bis (tetrahydro) anthracene, westernol-I (IV, $R^1 = Me$ and $R^2 = H$) and westernol-II (III, $R^1 = R^2 = H$) and vitexin have been isolated (Fig. 3) from the roots of *S. occidentalis* with chrysophanol, emodin, pinseline, questine, gerylmichrysone. Spectral evidence served as the basis for establishing structures [43]. Two sterols called β-sitosterol and campesterol were found at the same time in the plant [44]. From the roots of *S. occidentalis* six anthraquinones including Islandicin, Chrysophanol, Physcion, Emodine, Questine, and 7-methyl-physcion, have been isolated. Also, bianthaqui-nones-chrysophanol 10,10-bianthrone), three tetrahydro anthracenes (Germichrysone, Methylgermitorosak) [45], 2010 have been also isolated from the roots of *S. occidentalis*. Researchers identified chrysophanol, rhein, emodin, and aloe-emodin in a sample from Nigeria [42].

4.3 Seeds

Research has demonstrated the presence of toxic albumin (whose identity is still unknown) and chrysophanol in the seeds of *S. occidentalis* (Fig. 5).

Later, the derivative of 1,4-oxazine N-methyl morpholine was prepared using samples of these grains of *S. occidentalis* [49]. Researchers have also reported the presence of heterosides of physcion-dianthrone and physcion condensed into homodianthrone as well as a mixture of anthraquinones [50], 1-glucoside of physcion (0.018%), physcion (0.0068%) from the seeds of *S. occidentalis*. In addition, two new anthraquinones, 1,8-dihydroxy-2-methyl anthraquinone, and 1,4,5-trihydroxy-3-methyl anthramethanox [35,44,51] in the form of aglycoside have been also isolated from the seeds of *S. occidentalis* [51,52].

Fig. 4. The structures of Occidentol-I, II, and Vitexin, isolated from *S. occidentalis* [38]

Fig. 5. Chemical structure of Chrysophano [46-48]
Valeri and Gimeno [53] identified resin, tannins, carbohydrates, and fatty acids in seeds. A new polysaccharide galactomannan molecule, composed of D-galactose and D-mannose in the proportion of 1:3.1, as well as traces of D-xylose have also been found in the seeds of S. occidentalis [54,55]. From the seeds, carbohydrates (maltose, lactose, sucrose, and raffinose) were also detected [56]. There is also a report from Sudan, which indicates the presence of cardenolides, westernisare-1,8-dihydroxy-2-methyl anthraquinone, physcion, rhein, aloe-emodin, chrysophanol, and steroid glucosides in these grains [57,58]. A researcher in another study on S. occidentalis revealed that grains have an oil content of 3.2 to 45% fatty acids with a ratio of 2:20 (unsaturated/saturated). The total tocopherol content is 32.7 mg /100 g [59].

4.4 Leaves

The leaves of S. occidentalis have shown to contain a mixture of flavonoid C and apigenin (Fig. 7).

Next to these compounds, these authors found also vitexin, 7-vexin heteroside, chrysophanol, emodine, glycosides and as well as free physcion [42]. Bianthraquinone 1,1-bi-4,4’, 5,5’-tetrahydroxy-2,2’-dimethyl anthraquinone as well as flavone meterucinol-7-O-α-L-rhamnoside were also isolated from samples of f S. occidentalis leaves [60,61]. Other substances found in S. occidentalis leaves are alkaloids, flavonoids, tannins, phlobatannins, chrysophanol, emodine, physcion, tetrahydroanthracene derivatives, germichryson and westernins A, B, and C. These compounds have been known to be potent anticancer [57]. Ethanolic and aqueous extracts from Nigerian’s S. occidentalis leaves have shown the presence of alkaloids, tannins, saponins and phlobatannins [62].

4.5 Flowers

Chemical analysis of S. occidentalis flowers indicated the presence of anthraquinones, emodina, physcion, and physcion-1-O-β-D-glucoside as well as sterol β-sitosterol (Fig. 8) [63].
Two chemicals including the glycoside and two flavonoids A and B have been identified in the pods of S. occidentalis (Fig. 9).

Mailard identified the bioside as a neohesperidoside [65]. The two glycosides were found for the first time as natural products [66]. 1,8-Dihydroxy-2-methyl anthraquinone ; 1,4,5-trihydroxy-7-methoxy-3-methyl anthraquinone, physcion, rhein, aloe-emodine, chrysophanol and steroid glycosides have also been reported in S. occidentalis pods [57]. In China, literature data revealed that several glycosides have been isolated from flowers of S. occidentalis. These were identified as anthraquinone derivatives containing N-methylmorpholine, galactomannan, cassioline, xanthorine, helminthosporin, apigenin, heteroside dianthrone, etc. [59].

5. PHARMACOLOGICAL PROPERTIES

The whole plant of S. occidentalis has been reported to be rich in important antibacterial, antifungal, laxative, analgesic, chlorinated and diuretic properties as presented in Table 4 [38,67].

Table 4. Ethnomedical values granted to S. occidentalis [38,67]

<table>
<thead>
<tr>
<th>No.</th>
<th>Part of the plant used</th>
<th>Ethnomedicinal usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Whole plant</td>
<td>The extract of S. occidentalis has been used in traditional medicine to treat eye inflammation. In traditional Jamaican medicine, it is also used to treat diarrhea, dysentery, constipation, fever, cancer, eczema and venereal diseases [68].</td>
</tr>
<tr>
<td>2.</td>
<td>Roots</td>
<td>In veterinary medicine, the roots of S. occidentalis are used as a disease medicine in animals. They are also used as an antidote to neutralize the poison. The roots of this plant are also used to treat gastric disorders, increase lactation and fight against whooping cough [69]. In Nigeria, women use the decoction of S. occidentalis as herbal tea to fight against white losses [69].</td>
</tr>
<tr>
<td>3.</td>
<td>Leaves</td>
<td>The leaves S. occidentalis leaves are used to treat bone fractures, against fever, moth, skin diseases, throat infections and sores. Small branches of S. occidentalis are used as toothbrushes. The leaves of this plant are burned and the ash obtained is mixed with coconut oil. It is applied to the eyelids for a sweet sleep [70].</td>
</tr>
<tr>
<td>4.</td>
<td>Seeds</td>
<td>Grilled seeds are sprayed using a small amount of 3g equivalent to 1/10th of an ounce. To make tea, in China more precisely in Fujian province, the grains of the plant consumed in infusion replace tea for people suffering from high blood pressure. Blackberries are used on helminths and are used as antipyretics [7].</td>
</tr>
<tr>
<td>5.</td>
<td>Gousses</td>
<td>The Indians grill 8 to 10 pods of S. occidentalis and consume them against cough. They also use the decoction of grains and flowers, estimated at 10 g in the treatment of mental disorders [71].</td>
</tr>
</tbody>
</table>
5.1 Antimicrobial Activity

The chemicals products isolated from *S. occidentalis* leaves have shown activity against several types of microbes, including *Corynebacterium diphtheriae*, *Mucor sp.*, *Neisseria sp.*, *Salmonella sp.*, and *Aspergillus niger* [26].

Tested against different pathogenic bacteria, the leaf extract of this plant has been shown to be active against *Salmonella enteridis* and *Staphylococcus aureus*. On the other hand, a negative effect was observed against *E. coli* and *Shigella dysenteriae* [72]. In another research, the extracts obtained from the leaves in different solvents proved a high antimicrobial action on *E. coli* in concentration between 900 and 1000 mg/L.

However, Sganuwan et al., 2006 reported that *E. coli* has been the most sensitive to the hexane extract of *S. occidentalis*, at concentrations between 500 and 1000 mg/L, whereas no antimicrobial activity was observed against other microorganisms tested on *P. multocida*, *S. typhi*, *S. typhimurium*, *S. pyogens* and *S. pneumoniae*. Leaf extracts, flowers, pods and bark of *S. occidentalis* have been tested against different bacteria including *P. aeruginosa*, the *B. cerus*, the *S. aureus*, *Proteus mirabilis* and *E. coli* and on mushrooms (*Candida albicans*, *Aspergillus niger*, *A. flavus* and *Fusarium oxysporum*) [73].

S. occidentalis plant extract has also demonstrated significant antimicrobial activities against all microorganisms comparable to ampicillin and gentamycin [74,75]. When the ethanol extract and the metabolite-rich fractions of different parts of *S. occidentalis* were examined, anthraquinones were observed to be more effective against *E. coliand*, *S. aureus* while the sennosides (Fig. 9) were more effective against *A. flavus* (28 mm) [74,75].

Furthermore, testing the antiviral and anti-tumor actions of *S. occidentalis*, revealed no activity of the extract [76]. The seeds of *S. occidentalis* have proven to possess strongly antibacterial activity against *S. aureus*, *B. subtilis*, *B. proteus* and *Vibrio cholera and* antifungal action against *A. flavus*, *A. niger* and *Trichophyton mentagrophytes* [77-79].

It has been proven in a study on the antibacterial activity of *S. occidentalis* extract tested on microorganisms such as *S. aureus*, and *S. typhi*. It was established that these bacteria were sensitive to the *S. occidentalis* extract [65,80,81]. In another study on the antibacterial activity of plants used as drugs in traditional Ghanaian treatment with a particular reference to MRSA (Methicillin-resistant *S. aureus*), the action of *S. occidentalis* was reported. At the same time, other researchers found that *S. occidentalis* has significant antibacterial action [34,65].

Fig. 10. The chemical structure of sennoglycosides [38]
The ethanolic and hot water extracts of *S. occidentalis* have been studied for their potential to release sodium and potassium ions against pathogenic bacteria selected in the genera *Bacillus subtilis*, *Staphylococcus*, *Escherichia*, *Streptococcus*, *Klebsiella*, *Pseudomonas* and *Salmonella* using the flame photometer. A researcher has proven the aqueous extract to be more effective against parasites in the leakage of Na and K ions, and while the ethanol extract demonstrated effectiveness against all organisms except Salmonella. In that study, the aqueous extract released 2.66 ppm of Na ions on *P. aeruginosa* whereas the ethanol extract did so with 13.3 ppm.

The mechanism of action of the antimicrobial activity of the *Fabaceae* family to which *S. occidentalis* belongs, can be explained by their ability to induce a leak of these ions [82]. Antimicrobial efficacy of *S. occidentalis* can cause damage and inactivation of enzymes due to their ability to induce leakage of these ions [83,84]. It has been established that Na and K ions are known to affect osmotic equilibria in the cell and their leakage can cause cell lilies and ultimately death. These ions are also known to activate enzymes which are biological catalysts and are involved in biochemical reactions [85].

Most cellular activities, including respiratory and biosynthetic functions, are under the control of enzymes.

S. occidentalis has been also used in formulation of several herbs [19]. This is the case with Liv.52, used as a tablet and syrup in the treatment of hepatitis A [19]. Moreover, several plants including *C. spinosa*, *C. intybus*, *S. nigrum*, *T. arjuna*, *A. folium* and *T. gallica* etc., and *S. occidentalis* have been in meta-analysis of 50 clinical studies over 30 years in 4490 patients [19]. The analysis was carried out to assess the short and long term efficacy and safety of Liv.52 in hepatitis A [19].

These authors concluded that Liv.52 tablets and syrups were very effective as the data revealed clinical and biochemical improvements with significant symptomatic control over this infection. In addition, a very significant reduction was noted during the average recovery period while no adverse reactions were reported in all trials and overall drug observance which resulted in better treatment of hepatitis A using *S. occidentalis* old [19].

5.2 Antioxidant and Hepato-protective Activities

The action of liver protection using organic and ethanol extract (50% v/v) of *S. occidentalis* leaves was led by Jafri and collaborators [86] on rat liver damage, induced by paracetamol and ethyl alcohol by monitoring serum transaminases, alkaline phosphatase, serum cholesterol, serum total lipids and histopathological alterations. It was concluded or just noted based on which analysis? or all above? that the leaf extract resulted in significant liver protection [86].

A few reports have shown that extracts from *S. occidentalis* reduced DNA degradation caused by the iron-induced fenton (II) reaction whereas Jafri and co-workers also reported that inhibition and DNA damage might be due to their high chelation capacity of ferrous ions [86,87].

Himoliv is a formulation used in traditional herbal treatment in which *S. occidentalis* is used as an ingredient at 20 mg / 5ml. It was suggested that Himoliv induces the prevention of hepatotoxicityinduced by carbon tetrachloride in rats [87]. Additionly, the formulation tended to decrease the final products of lipid peroxidation or MDA in the liver of rats that were bred in carbon tetrachloride. Another observation was that Himoliv improved the protective enzymes superoxide dismutase (SOD) and catalase in the homogenate of rat liver [87].

5.3 Antimalarial Activity

Various extracts from *S. occidentalis* have mounted significant antimalarial activity [88-90]. The ethanolic extracts of lyophilized dichloromethane from the bark and root of *S. occidentalis* were evaluated for four days for their antimalarial activity in vivo in suppressive tests against *P. berghei* Anka in mice [89].

No toxic or fatal effects were observed in mice treated orally with any of the extracts in a single dose of 500 mg / kg body weight, or at the same dose administered twice a week for a month. However, at a dose of 200 mg/kg, all the ethanol and dichloromethane extracts from the bark and roots produced significant chemo-suppressions, greater than 60% on parasitemia when administered orally. Hence these excerpts from *S. occidentalis* were active. It is also observed that the lyophilized aqueous extract was less active than the ethanol extract counterpart [89].
while both the ethanol and chloroformic extracts demonstrated good antimalarial activity. Tona and co-workers speculated that these extracts had prevented more than 60% parasitic growth at a concentration of 6 μg/ml [88] which was confirmed in their subsequent study [90].

5.4 Anti-inflammatory Activity

Using the carrageenan-induced paw edema test and cotton ball granuloma, Sadique and co-workers have shown that the isolated compounds of S. occidentalis leaves have proven good anti-inflammatory activity [91]. Their study uncovered that S. occidentalis was most active at a dose of 2000 mg/kg. Furthermore, these extracts presented with the ability to decrease the lipid peroxide level. Another finding of their study was that the activity of gamma-glutamyl transpeptidase and phospholipase A2 in exudates of the granuloma of cotton pellets resulted in reduced availability of arachidonic acid, a precursor to the biosynthesis of prostaglandins [91].

5.5 Antimutagenic / anticarcinogenic Activity

Kinase inhibitors of the proto-oncogene cellular-Sarcoma (c-Src or simply Sarc) family have been shown to be involved in many signal transduction pathways, modulated by oncogenes. A study by Chang et al., [92] investigated the activity S. occidentalis (a Chinese anti-tumor medicinal plant) on Src. Tyrosine kinase Lck (p56lck) and found the plant to be quite active in this bioassay.

A subsequent study Sharma and co-workers reported that extracts from Senkot tablets made of ethanol concentrate solution of S. occidentalis was not active on the mutagen, while inhibiting the mutagenicity of benzopyrene, aflatoxin B1 and methyl methanesulphonate in the Ames histidine reversion test using the strains TA98 and TA100 tested on S. typhimurium [93]. The research also unravelled the extract of Senkot to completely inhibited the mutagenicity of the promotional agents resulting largely from an interaction with the metabolic process involved in the activation of procarcinogens. It has been reported also that the extract of S. occidentalis had previously been reported to be effective against the chromosomal aberrations produced by benzopyrene and cyclophosphamide in mice [93].

5.6 Other Activities

S. occidentalis has been one of the ingredients most used in the preparation of Herbolax, which is an herbal formulation commonly used in the treatment of constipation. The efficacy of herbolax has been proven on 30 subjects with all patients reported to have a smooth and effortless evacuation of the stool. No patient experienced purging, pinching or abdominal pain following the treatment. In addition, no subject complained of aqueous stools, weakness, lethargy or cramps, and no recurrence of constipation after 2 weeks was found [94]. It was concluded that S. occidentalis possessed stimulates immunity-stimulating activity.

Furthermore, a new indigenous metabolic patch or syup for newborns and infants, called “Bonnisan” containing 0.5mg/5ml of S. occidentalis is marketed. In this composition, it was found that S. occidentalis, and others plants spices including P. longum, E. cardamomum etc., could help bringing immediate relief from the discomfort caused by the gastric wind [95].

6. TOXICOLOGICAL STUDIES

S. occidentalis has been found to have some toxic effects in animals, which were found mainly on skeletal muscles, liver, kidneys, and heart. In these intoxicated animals, the toxicity rate varied from 0.05% to 0.5% of body weight. Acute atrophy of the liver and muscles have mainly been observed in these animals that received extracts from S. occidentalis [96, 97].

Moreover, there have been reports on poisoning of chicken characterized by weight loss, weakness, diarrhea, hypothermia, sometimes ataxia, decubitus and death upon consumption of S. occidentalis. This was further confirmed by macroscopic lesions revealing pallor of the skeletal and cardiac muscles and congestion of the liver [48]. Other toxicity signs found in chickens included focal swelling, fragmentation, and necrosis of muscle fibers of the semi-tendinous muscle during histological sections [98].

Further toxicological studies on liver mitochondria in chicks treated from 3 to 4 weeks have shown phosphorylation, respiratory control, and lower levels in the use of oxygen [99]. The seeds of S. occidentalis have been shown to be toxic in pigs through the development of ataxia and other signs of neuromuscular dysfunction in 6 or 8 weeks. Other toxicological studies have shown lethargy, weakness, decubitus, depression and wasting in rats fed with 1%, 2% and 4% of grains of the above plant [15,100].
The experiments carried out on rabbits revealed trace of the toxic effects due to *S. occidentalis*. Histopathological examination of rabbits reported the heart and the liver as the most organs affected by myocardial necrosis and centrolobular degeneration. The study found a decrease in the action of cytochrome oxidase in glycogenolytic fibers. Thus, a degeneration of the muscles was confirmed by morphometric studies. In different parts of India, numerous epidemics of acute childhood illnesses with severe brain dysfunction (Japanese encephalitis) occur at various times. These ailments have been linked to the consumption of *S. occidentalis* seeds [17,101-103].

Poisoning due to *S. occidentalis* in children seemed to mainly affect three systems, the liver, skeletal muscles and the brain [18]. In addition, it has been shown that the leaves of plant *S. occidentalis* contain phytochemical compounds which can be toxic to humans. In a detailed study on shrimp brine exposed to the toxic methanolic and chloroformic extracts from *S. occidentalis* leaves, it was revealed that these extracts were lethal with LC50 value as low as 0.995 μg/ml [104].

In a subsequent study, excerpts from *S. occidentalis* also showed lethality on shrimp brine with a LC50 value of more than 1000 μg/ml [105]. Other research on the aqueous leaf extract of this plant has been shown to contain hypoproteinemic effects and the levels of alanine amino transferase enzymes, aspartate aminotransferase and alkaline phosphatase were significantly high, which demonstrates that *S. occidentalis* could be slightly toxic as a decoction for liver diseases [106].

However, root, leaves and stems have been toxic to cattle only when consumed in large quantities. In rats, leaf toxicity was observed at a dose of 12.5 g/kg body weight [107]. Aragao and collaborators [108] studied the toxic and reproductive effects of *S. occidentalis* extract on pregnant rats. In this study, three groups of pregnant rats were treated orally from the 1st to the 6th day (pre-implantation period) and from the 7th to the 14th day (organogenic period) of pregnancy, with doses of 250 and 500 mg/Kg. It was concluded, *S. occidentalis* extract was embryotoxic at the two doses of 250 and 500 mg/kg of C which was evidenced by the presence of dead fetuses.

Further studies on the reproductive toxicity of ethanol extract in Derrisbrevipes and Justicia simplexin rats, revealed this extract to possess more abortive type effect than the anti-implantation activity. It also had low estrogenic activity in female albino rats [109].

7. DYSMENORRHEA

Dysmenorrhea is a real public health problem [110]. It affects 40 to 90% of adolescent girls and is a common cause of truancy. Despite the impact on their quality of life, only 15% of adolescent girls consult for dysmenorrhea [111,112]. Its prevalence among adolescent girls is estimated at 73% [113]. Dysmenorrhea implies the pain that occurs before or accompanies the rules in women. These pains are located mainly around the pelvis and can produce various signs such as headache, digestion disorders, inflammation of the uterine mucosa, etc. By manifesting themselves, pain can make someone lose their rights in society by disrupting the socio-economic dimensions of women [110]. Irritability and dizziness characterize women during dysmenorrhea [111].

Classically, the pains of dysmenorrhea begin in the early hours that mark the announcement of the rules and persist for two to three days [111]. Researches have established that these prostaglandins are the likely sources of pain experienced by women when developing primary dysmenorrhea [114]. It has been shown that prostaglandins activate the decrease in volume of uterus muscle [114].

In the event of high progesterone production, this inhibits the action of prostaglandins in order to cause the decrease in the volume of the uterus muscles. Excessive progesterone production decreases rapidly during menstruation and the production of prostaglandins increases. This causes the uterus to contract and causes the mucous membrane to be removed from the uterus.

This can lead to headaches, diarrhea, constipation, nausea and increased need for urine [114]. Prostaglandins cause the calcium found in the cell to rise resulting in an increase in uterine contraction [110]. As result of the dysmenorrhea pain or menstruation produces, some women in sub-Saharan Africa practice self-medication in their habits to alleviate the pain. Inaccessibility and unaffordability to modern drugs intended to block the production of prostaglandins [114], push some women mostly in the developing countries to rather seek for
alternatives including the use medicinal plants including *S. occidentalis*, which is an excellent source (remedy) of value in order to treat dysmenorrhea. Thus, 25% of modern antidiysmenorrhea drugs have been prepared from medicinal plants such as *S. occidentalis* and so many others that have been used in the traditional way [110].

8. CONCLUSION

The purpose of this study was to review the literature on the use, nutritional value, phytochemistry and phytopharmacological activities of this precious plant species, with a view to broadening its spectrum of use in the treatment of dysmenorrhea specifically. This has fortunately been demonstrated and proven by its good anti-inflammatory activity, as established by Sadique and co-workers in their study as described above (section 5.4 of this review). Their conclusions demonstrated the ability of extracts from this plant to lower the lipid peroxide content, the activity of gamma-glutamyl transpeptidase and phospholipase A2 in exudates of the granuloma of cotton pellets, resulting in a reduced availability of arachidonic acid, which is a major precursor to the biosynthesis of prostaglandins, which are a likely source and/or cause of dysmenorrhea. Thus, from all of the above mentioned, this research speculates that the plant *S. occidentalis* constitutes a potentially excellent remedy and a primary asset in the search for drugs against dysmenorrhea and other inflammations. It's therefore believed herein that the information presented and detailed in this review on the phytochemical profile and the pharmacological activities of the various extracts of the plant *S. occidentalis* provide, not only a detailed but also firm evidence on the use of this plant in different therapies including the treatment of the dysmenorrhea.

This study therefore, opens up new doors in this field specially, for future work, not only to improve the currently used therapies, but also to design and develop novel therapies, which are saffer, natural, and with less side effects than the previously or currently used synthetic pharmaceutical drugs, which are prepared in laboratories using long methodologies, toxic solvents and catalysts, with a high environmental risk and mostly in very poor yields.

- This research covered almost all reports, with a detail of the phytochemistry and phytopharmaceutical profiles and respective mode of action of some of them.
- This research strongly believes and anticipate that the summarized literatures in this field will definitely serve as an important update on *S. occidentalis* and its use, and permit researchers to also to develop novel drugs for different therapies, including the dismenorrheal.

CONSENT

It’s not applicable.

ETHICAL APPROVAL

It’s not applicable.

ACKNOWLEDGEMENT

The authors highly acknowledge the support from the School of Pharmacy, Health Sciences, North-West University, Potchefstroom, South Africa and hereby declare no conflict of interest.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

5. Oladunmoye MK, Adetuyi FC, Akinyosoye FA. Effect of Cassia hirsuta (L) extract on DNA profile of some microorganisms.

35. Anton, R., Duqenois, P. (1968) The uses of Cassia in tropical and subtropical countries examined according to some of the chemical constituents of these medicinal plants in Plantes Medical Phytotherapie, 2, 255-268p.

51. Lal, J., Gupta, P.C. (1973). Anthraquinone glycoside from the seeds of Cassia occidentalis in Experentia, Physcion and...
phytosterol from the roots of *Cassia occidentalis* in Phytochemistry, 12, 186p.

52. Rai PP, Shok M. Anthraquinone glycosides from plant parts of *Cassia occidentalis*. Ind J Pharm Sci. 1983;45:87-.

78. Qadry JS, Zafar R. Tissue culture studies of some *Cassia* species [flavouring and perfume plants]. Planta Medica. 1978..

© 2022 Kalombo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/87319