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ABSTRACT 
 

Chalcones, a distinctive group of natural compounds, have gained attention in agriculture due to 
their versatile biological activities. As a subclass of flavonoids, chalcones are known for their open-
chain structure, contributing to their herbicidal, fungicidal, bactericidal, and antiviral properties. 
These attributes make chalcones promising candidates for sustainable agriculture, especially in 
light of increasing concerns about synthetic pesticides' environmental and health impacts. The 
European Green Deal 2030, which seeks to halve chemical pesticides, highlights the urgent need 
for alternatives like chalcones. Their synthesis has been refined over time, allowing for the 
development of compounds tailored to specific agricultural needs. Additionally, advanced      
analytical techniques, such as chromatography, are crucial in accurately identifying and 
characterizing chalcones, ensuring their efficacy and safety. As agriculture shifts towards                         
more sustainable practices, chalcones are poised to become key players in reducing                
dependency on synthetic chemicals. They offer a natural and effective solution for pest and weed 
management. Their potential for broad application underscores the importance of continued 
research in this field. 
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1. INTRODUCTION  
 
Chalcones distinguish themselves from the core 
flavonoid structure through their unique 
configuration. Unlike other flavonoids, chalcones 
are classified as open-chain flavonoids due to 
the absence of the C ring typically found in the 
basic flavonoid skeleton. These compounds are 
important secondary metabolites across the plant 
kingdom, contributing significantly to plant growth 
and defense against pathogens. Flavonoids, a 
broad family of phenolic compounds, are                 
divided into 12 subgroups based on the                                 
presence of methyl or hydroxyl groups on the 
benzene ring and the oxidation state of their 
heterocyclic ring. Among these subgroups                
are chalcones, isoflavones, aurones, 
dihydroflavonols, flavanones, flavones,   
flavanols, leucoanthocyanidins, phlobaphenes, 
proanthocyanidins, and stilbenes [1,2]. 

 
"Chalcone" is derived from the Greek word 
"chalcos," meaning bronze. Noteworthy 
chalcones include phloridzin, butein, phloretin, 
and chalconaringenin. These compounds are 
commonly found in strawberries, berries, wheat 
products, tomatoes, pears, apples, citrus fruits, 
and hops [3,4,5]. Chalcones and their derivatives 

have garnered significant interest due to their 
extensive range of nutritional and biological 
activities, [6,7] which include not just a few but a 
wide array of intriguing properties such as anti-
inflammatory, antitumoral, antibacterial, 
antifungal, antimalarial, antitubercular, and anti-
pigmentation properties, often demonstrating 
exceptional effectiveness [3,4,5]. Additionally, 
chalcones are valuable in weed control [4,8]. 
Remarkably, a single compound like 
isobavachalcone can have multiple biological 
activities, including chemopreventive, anticancer, 
antibacterial, and antifungal properties [1,9]. The 
structure of various chalcones is shown in Fig. 1. 
 
Chalcones have a long history of use in 
traditional medicine, and their natural forms are 
now being investigated for contemporary 
applications [1]. The European Union's Farm to 
Fork strategy aims to reduce synthetic pesticide 
use by 2030, driving a growing demand for 
biopesticides. These natural alternatives are 
preferred for their diverse mechanisms of action 
and greater environmental sustainability. This 
review offers a current and thorough examination 
of chalcones, covering their characteristics, 
properties, detection methods, and potential uses 
in agriculture. 
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2. CHARACTERISTICS  
 
Chemically speaking, chalcone molecules are α, 
β-unsaturated ketones of two aromatic rings 
(rings A and B) connected by a three-carbon 
alkenone unit [10,5]. The enzyme chalcone 
synthase (CHS, EC2.3.1.74) catalyzes the 
conversion of one p-coumaroyl-CoA molecule 
and three malonyl-CoA molecules into 
chalcones. In higher plants, this process 
synthesizes chalcones and orchestrates them. 
CHS is essential and significantly affects how 
plants grow and react to stressors, including UV 
rays, physical harm, herbivory, and microbial 
invasions [10,5]. CHS promotes and initiates the 
synthesis of secondary metabolites, such as 
phenolic compounds, in response to various 
stressors [11,12]. 
 
Although chalcones are found naturally and have 
a simple structural framework, several unique 
chalcone derivatives have been produced 
throughout time; bioactive chalcone derivatives 
have been improved for lesser toxicity by 

advances in synthetic chemistry, [5,13] opening 
up new applications in agriculture, food 
production, the chemical industry, and medicine 
[14,15]. Extensive research has been conducted 
on synthetic chalcones since the early 1800s. 
For example, Kostanecki and Tambor were 
among the first to synthesize chalcones using 
alcoholic alkalis and o-acetoxychalcone 
dibromides [16,5]. The Claisen–Schmidt 
condensation with hydrochloric acid, the 
phosphonate carbanions synthesis, the 
microwave-assisted and solvent-free synthesis 
with biocatalysts, and the aldol condensation with 
hetero-aryl methyl ketones and 4-(benzyloxy) 
benzaldehyde are examples of standard 
synthetic techniques [17,9,18]. 
 

During extraction, native chalcone glycosides 
can convert into flavanone glycosides, which 
limits their presence in food [7]. For example, 
licorice root and some traditional medicines 
based on licorice have retro chalcones, isomeric 
flavanones, and chalcones such as liquiritigenin 
and isoliquiritigenin [19]. 

 

 
 

Fig. 1. Chalcones and chalcones derived compounds 
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Dihydrochalcones (DHCs), commonly found in 
apples and apple products, are predominantly 
represented by phloridzin [20]. The concentration 
of DHCs is higher in the fruit peel, meaning 
peeled apples have fewer DHCs. Conversely, 
commercially produced apple juices and                
ciders often have 5–10 times higher DHC    
content because they use the whole fruit                  
and undergo thermal treatment that deactivates 
the enzymes responsible for DHC degradation 
[21]. 

 

3. PREPARATION TECHNIQUES 
 
Freeze-drying is one of the best techniques for 
sample preparation for chromatographic 
analysis, including UPLC-MS/MS. In this 
procedure, freeze-dried samples are ground for 
1.5 minutes at 30 Hz using a mixer mill equipped 
with a zirconia bead. The resultant lyophilized 
powder is then dissolved in 1.2 mL of a 70% 
methanol solution to yield 100 mg. After six 
rounds of vortexing this combination for 30 
seconds every 30 minutes, it is refrigerated at 4 
°C for the whole night. Following ten minutes of 
centrifugation at 12,000 rpm, the extracts are 
filtered, and then UPLC-MS/MS analysis is 
performed [22]. The crude product can be further 
purified using column chromatography. This 
method eliminates the target chemicals using a 
3:1 volume ratio of petroleum ether to ethyl 
acetate (EtOAc) [23]. 
  
Solid-phase extraction-high-performance liquid 
chromatography (SPE-HPLC) is used in the 
pharmaceutical sector to analyze chalcones in 
different species and clones of Salix [24]. One 
gram of bark was dried and ground, then 
extracted for forty-five minutes at sixty degrees 
Celsius using three and a half milliliters of 
methanol. Next, at lower pressure, the mixed 
methanolic extracts were concentrated. For SPE, 
an aliquot containing 80 µL of the concentrated 
extract was dried off and then redissolved in 80 
µL of 20% methanol.  
 
Two new chalcone glycosides were among the 
bioactive chemicals the methanol recovered from 
the mint. The plant's aerial components were air-
dried, powdered (1000 g), and then extracted 
four times at 40°C using methanol [25]. Following 
the solvent's vacuum evaporation, the crude 
extract was diluted in water and separated into 
successive liquids using n-butanol, petroleum 
ether, chloroform, and ethyl acetate. A rotary 
evaporator evaporated each solvent layer at a 
lower pressure [3].  

Fructus psoralen powder was extracted using a 
methanol solution acidified with hydrochloric 
acid. The application of ultrasonication aided the 
extraction process. Following extraction, the 
mixture was centrifuged for 20 minutes at 3000 
g, and the supernatant was saved for further 
examination [23,26].  
 

3.1 Two-dimensional High-performance 
Liquid Chromatography (2D-HPLC)  

 
Pobłocka-Olech emphasized how quickly and 
effectively a two-dimensional high-performance 
liquid chromatography (2D-HPLC) system can be 
used for willow bark comparison analysis (Fig. 2). 
This technique used 54 reference materials in 
the chromatographic separation; they included 
salicin and catechin, as well as 29 phenolic acids 
and 21 flavonoids (of which there were nine 
flavonols, four flavones, four flavanones, two 
biflavones, and two chalcones). An online system 
was used in the separation process using a 
heart-cut method [27,28]. 
 
In the first dimension (I), a Supelcosil LC-18 
column with gradient elution was used to 
progressively raise the methanol concentration in 
a methanol/water combination at a flow rate of 
0.4 mL/min. In the second dimension (II), using 
isocratic elution with combinations of acetonitrile 
and water as eluents, a monolithic silica gel-
packed Chromolith Performance RP18e column 
was utilized [17,29,20]. 
 
Under these idealized circumstances, methanol 
extracts from the barks of Salix purpurea, S. 
daphnoides clone, and S. sachalinensis 'Sekka' 
were examined. The 2D-HPLC technology allows 
plant extracts to be analyzed without the need for 
previous purification, making finding secondary 
metabolites in various plant matrices possible. 
 

3.2 Infrared Spectroscopy (FTIR) and 
Nuclear Magnetic Resonance (NMR) 

 
Their molecular structure reveals the unique 
characteristics of Chalcones' infrared (IR) 
spectra. The aromatic C-H bonds' symmetric and 
asymmetric stretching vibrations are seen in the 
3120–3080 cm−1 and 3060–3040 cm−1, each 
distinguished by two low-intensity bands. 
Furthermore, at 3030–3010 cm−1, the C–H 
stretching band of the =C–H group is visible. The 
in-plane deformation of the =C–H bond manifests 
as a wide weak band at 1460–1430 cm−1, 
whereas vibrations linked to the aromatic rings 
are assigned to bands at 1610–1570 cm−1. In the 
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enones (=C–C=O), the carbonyl stretching 
vibrations range from 1650 to 1685 cm−1. 
[9,13,20]. Spectroscopic methods like proton 
nuclear magnetic resonance (1H NMR) and 
Fourier transform infrared spectroscopy (FTIR) 
can be used to investigate the different chalcone 
derivatives (Fig. 3) [3,30,31]. 
 
The FTIR spectra of these derivatives, according 
to Hassan et al., exhibit unique peaks that are 
related to the C=O stretching of carbonyl 
chalcone in 1708 and 1712 cm−1 and the C=C 
stretching of alkenes at 1612 and 1622 cm−1. 
Protons of the aromatic ring are found between 
7.5 and 6.6 ppm, protons of the amine group 
between 10.7 and 10.6 ppm, and protons linked 
to HC-S at five ppm, according to the 1H NMR 
study of derivative C. The protons of the amine 
group are located at 10.5 ppm in derivative D, 
whereas those of the aromatic ring are found 
between 7.7 and 6.8 ppm, HC-S protons are at 
4.8 ppm, and methyl group protons are at 2.2 
ppm [3,30,31]. 
 

3.3 Liquid Chromatography (LC) 
 
When examined with absorbance detectors, 
chalcones have two prominent absorption bands: 
Band I, usually observed between 340 and 390 
nm, and Band II, between 220 and 270 nm. A 

combination of flavonoids, including naringenin, 
its glycosides (both (+) and (-)-5-O-glycosides), 
naringenin 7-O-glycoside, isosalipurposide, and 
its p-coumaric ester, were subjected to both 
qualitative and quantitative HPLC analysis [27]. 
Gradient elution was used in this research on a 
Discovery C18 column. Water and acetonitrile 
comprised the mobile phase, and 
orthophosphoric acid was added to balance the 
pH. A diode array detector (DAD) and a UV–vis 
detector set at 280 nm were used to expedite 
identification. This method was most effective 
with solid-phase extraction (SPE) procedures. 
[30]. A particular derivative of trans-chalcone, 
which is substituted with hydroxyl groups at the 
4, 4′, and 6 positions and a β-D-
glucopyranosyloxy group at the 2′ position, acts 
as both a plant metabolite and an antioxidant 
[31]. 
 
The separation of chalcones from willow tree 
bark using a Discovery C18 column (5 µm, 150 × 
2.1 mm) [24]. They used a 15-minute               
gradient elution with a 0.4 mL/min flow rate. 
Detection was performed using UV–vis DAD at 
280 nm, and chalcones and flavanones were 
quantified through external standardization, 
employing isoliquiritigenin and its derivative, the 
6′′-O-p-coumaroyl ester, as reference standards 
[25]. 

 

 
 

Fig. 2. Two-Dimensional High-Performance Liquid Chromatography (2D-HPLC) 
(Source: Shimadzu) 
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Fig. 3. Nuclear Magnetic Resonance   
(Source: Wikipedia) 

 
Additionally, Chen et al. con ducted HPLC–UV 
analyses using a DL-Cl8 column (5.0 µm, 250 
mm, and 4.6 mm) with a 0.5 mL/min flow rate. 
Using gradient elution, the mobile phase included 
acetonitrile (A) and 0.01 M formic acid (B). 
Detection was set at 246 nm, offering detailed 
insights into chalcones' chromatographic 
properties and related compounds [3]. 
 

3.4 Liquid Chromatography Coupled with 
Mass Spectrometry (LC-MS) 

 
“Paeonia delavayi var. lutea extracts were 
examined by Zou et al. utilizing a Shimadzu 
UPLC-ESI-MS/MS system. An Agilent SB-C18 
(1.8 µm, 2.1 × 100 mm) UPLC column was 
utilized, and the mobile phase comprised 
acetonitrile and clean water combined with 0.1% 
formic acid” [22]. “The samples were put through 
a gradient program using an injection volume of 
4 µL, and an ESI-triple quadrupole-linear ion trap 
(QTRAP)-MS was used to collect the effluent. 
Similar to this, Ma et al. created an internal 
standard (IS) of neobavaisoflavone to measure 
isobavachalcone (IBC) in rat plasma using 
selective high-performance liquid 
chromatography-mass spectrometry (LC-
MS/MS)” [32]. “Isomatic elution separated the 
analytes on a Kinetex C18 column using 

acetonitrile (60:40, v/v) as the mobile phase” 
[33,34,35]. “An electrospray ionization (ESI) 
source was employed, worked in the negative ion 
mode, and quantification was achieved through 
multiple reactions monitoring (MRM). This 
method showed good linearity within the 
concentration range of 3.79–484.5 ng/mL for IBC 
in rat plasma. Furthermore, Chen et al. detected 
significant constituents, including bakuchiol, 
bavachin, bavachinin, and isobavachalcone in 
Fructus psoraleae using HPLC coupled with UV, 
MS, and electrochemical detectors (ECD) (Fig. 
4). The MS analysis was conducted in negative 
ion mode using selected ion monitoring (SIM), 
offering high selectivity and sensitivity for 
deciding the constituents within a mass range of 
50–1000 m/z” [3,23,36]. 
 

3.5 MALDI Technique  
 
“Krittanai et al. reported that liquid 
chromatography coupled with UV detection lacks 
sensitivity in finding licochalcone A (LicoA), a 
compound commonly found in the root of 
Chinese licorice (Glycyrrhiza inflata Batalin). 
Consequently, they developed an enzyme-linked 
immunosorbent assay (ELISA) using a specific 
antibody to measure LicoA quantitatively. This 
assay showed high specificity to LicoA with 
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minimal cross-reactivity to structurally similar 
substances. Upon method optimization, the 
detection limit was determined to be 4.32 ng/mL, 
with a quantification range of 6.84–107.21 
ng/mL. The newly developed assay successfully 
measured LicoA concentration in raw licorice and 
commercially available products (Fig. 5)” [3,37]. 
 

4. CHALCONES BIOLOGICAL 
ACTIVITIES AND THEIR 
APPLICATIONS IN AGRICULTURE 

 
Chalcones are versatile compounds highly 
regarded in agriculture for their essential role in 
managing weeds and pests. As environmentally 
friendly pesticides, they exhibit various biological 

activities, effectively targeting various organisms 
[38]. The biological effectiveness of chalcones is 
primarily determined by their structural features, 
such as the positioning of substituents like 
hydroxyl groups and the presence of the α, β 
double bond [3]. By modifying the structure of 
chalcones through the addition of specific 
functional groups, their desired biological 
activities can be enhanced, making them 
valuable intermediates in the synthesis of 
therapeutically beneficial compounds [39]. 
Chalcones demonstrate significant potential in 
agricultural applications, offering a broad 
spectrum of activities, including phytotoxic, 
bactericidal, antifungal, antiviral, antihelmintic, 
insecticidal, and antifeedant properties. 

 

 
 

Fig. 4. LC-MS   
(Source: Technology Networks) 

 

 
 

Fig. 5. MALDI Technique   
(Source: Shimadzu) 
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4.1 Nematicides  
 
Chalcones and their derivatives show promising 
nematocidal activity against plant-parasitic 
nematodes, including economically significant 
species like Meloidogyne spp [40,41,18,42]. 
Studies have found chalcone analogs with 
superior nematocidal activity to commercial 
nematicides, offering potential alternatives for 
nematode control in agriculture [40,42]. 
Mechanistic investigations suggest that 
chalcones inhibit crucial nematode enzymes, 
contributing to their nematocidal activity [40,42]. 
Additionally, the polarity and planarity of 
chalcones influence their effectiveness against 
nematodes, highlighting the importance of 
structural characteristics in their nematocidal 
activity [2,40]. 
 

4.2 Fungicides  
 
Chalcones are renowned for their antifungal 
properties against human and plant pathogens. 
They inhibit crucial fungal enzymes in cell wall 
synthesis, making them effective against various 
pathogens. For example, chalcones derived from 
Zuccagnia punctata have shown potent activity 
against soybean pathogens like Phomopsis 
longicolla and Colletotrichum truncatum [43]. 
Similarly, plant-origin chalcones have proved 
inhibitory effects on fungi such as Alternaria sp., 
Fusarium spp., and Botrytis sp., which cause 
significant agricultural losses [44,45]. Synthetic 
chalcone derivatives have been developed with 
enhanced antifungal properties, offering 
promising alternatives to conventional fungicides 
[5]. These derivatives disrupt fungal cell 
membranes and inhibit fungal growth through 
diverse mechanisms, highlighting their potential 
as future fungicides [22,46,47]. 
 

4.3 Antiviral Agents  
 
Chalcones and their derivatives have appeared 
as promising antiviral agents against various 
viruses, including plant viruses like the tobacco 
mosaic virus (TMV) and cucumber mosaic virus 
(CMV). Structural modifications of chalcones 
have led to compounds with potent antiviral 
activity against TMV and CMV [48,49]. 
Mechanistic studies have revealed their ability to 
inhibit viral replication by targeting essential viral 
proteins like coat proteins [49]. Recent research 
has also focused on enhancing the antiviral 
activity of chalcones through structural 
modifications, offering new avenues for 
combating viral infections in crops. 

4.4 Insecticides  
 
Both natural and synthetic chalcones exhibit 
potent insecticidal activity against a wide range 
of insect pests. Compounds like xanthohumol 
and isoxanthohumol derived from hop plants 
have shown significant insecticidal activity [50]. 

Synthetic chalcones have been synthesized and 
evaluated for their pesticidal properties, with 
structural modifications influencing their efficacy 
against insect pests. Mechanistic studies have 
elucidated the mode of action of chalcones, 
suggesting their potential in developing novel 
insecticides for pest management in agriculture 
[51,52,53]. 
 
In conclusion, chalcones represent a versatile 
class of compounds with immense potential in 
agriculture. Their diverse biological activities and 
structural modifiability make them valuable 
assets in developing eco-friendly pesticides, 
herbicides, fungicides, nematicides, and 
insecticides. Continued research into chalcone 
derivatives and their mechanisms of action holds 
promise for addressing agricultural challenges 
and ensuring sustainable crop production. 
 

4.5 Herbicides  
 
Chalcones are increasingly recognized for their 
phytotoxic properties, paving the way for 
developing novel herbicides. Research shows 
that many chalcones exhibit potent herbicidal 
effects while keeping low crop toxicity [54,38]. 
Their activity varies based on the substituents on 
their structural rings A and B, the concentrations 
applied, and the specific plant species targeted. 
Derivatives holding functional groups such as 
phenoxyacetic acid, 4-(N, N-dimethylamino) 
phenyl, N-methylpyrrole, and especially 
thiophenyl have shown significant inhibitory 
effects [3,29,8,1]. For instance, flavokawains, 
derivatives of xantoxyline, effectively inhibited the 
growth of Chinese amaranth and barnyard grass 
[8]. Further studies have highlighted the inhibitory 
effects of chalcones on key plant enzymes such 
as coenzyme A ligase (4CL) and 
phosphoenolpyruvate carboxylase (PEPC), 
which are crucial for plant growth and 
metabolism [55,56]. Additionally, chalcones like 
trans-chalcone have been shown to induce 
programmed cell death (PCD) in plant seedlings, 
suggesting their potential as plant growth 
regulators [27]. Selectivity studies have revealed 
differential effects of chalcones on the growth of 
crops and weeds, further emphasizing their 
potential in weed management [54,38]. 
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Furthermore, dihydrochalcones like phloretin 
have shown significant growth-retarding effects 
on Arabidopsis seedlings, highlighting the broad 
applicability of chalcones in plant growth 
regulation and weed control [57-60]. 
 

5. CONCLUSIONS  
 

Chalcones are both naturally occurring and 
synthetically derived compounds and are 
recognized for their complexity and diversity. 
These compounds exhibit various biological 
activities, including herbicidal, fungicidal, 
antiviral, insecticidal, and plant-growth regulatory 
properties. Despite their long history of use in 
traditional medicine and agriculture, the full 
extent of their potential remains largely 
unexplored and insufficiently understood. This 
review provides an in-depth analysis of the 
various applications of chalcones, focusing on 
their effectiveness in different biological contexts 
and the innovative detection methods that have 
emerged from recent research. One significant 
challenge is the limited natural production of 
chalcones and their short half-life in plants, which 
makes direct extraction from nature difficult. 
These challenges have prompted substantial 
efforts to develop synthetic methods for 
producing chalcones and improving their stability 
and efficacy. To fully capitalize on the potential of 
chalcones, extensive research is necessary to 
uncover their mechanisms of action, validate 
their practical effectiveness in agricultural 
settings, and assess their safety for both the 
environment and human health. Addressing 
these critical areas will be crucial for optimizing 
the use of chalcones and ensuring their safe and 
practical application in agriculture. 
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