Protective Role of *Hypericum perforatum* L. and *Hypericum triquetrifolium* Turra against Inflammatory Diseases: Evidence from *In vitro* and *In vivo* Studies

Abdalsalam Kmail a*

a Faculty of Sciences, Arab American University Jenin, P.O. Box-240, Jenin, State of Palestine.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/EJMP/2022/v33i121112

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sciarticle5.com/review-history/94928

Received: 12/10/2022
Accepted: 17/12/2022
Published: 20/12/2022

ABSTRACT

More than 500 species of *Hypericum* are located throughout Europe, North America, North Africa, and Asia. These plants have a long history of employment in folk medicine as anti-inflammatory, antibacterial, and antiviral medicines, as well as for the treatment of burns, gastrointestinal problems, and depression. The most significant species of this genus are *Hypericum perforatum* L. and *Hypericum triquetrifolium* Turra because of their pharmacological activities. *Hypericum perforatum* L. and *Hypericum triquetrifolium* are widely known for their efficacy in reducing inflammation and improving wound healing. The main reason these plants have been used for treatment of mild to moderate depression. Nevertheless, some similar species are also utilized in conventional medicine and have been previously analyzed for their biological activity and phytochemical composition. The main classes of active substances are found in *Hypericum*...
species, including naphthodianthrones (such as hypericin and pseudohypericin), phloroglucinol derivatives, meroterpenoids, xanthones, phenols, flavonoids, and essential oils are examples of compounds with demonstrated biological activity [2]. Recent studies on hypericin, one of the principal active constituents of Hypericum, have shown that it can inhibit viral replication and act as an anticancer drug by inducing apoptosis. In addition, hypericin has been found to inhibit HIV by weakening the exterior of the virus. Likewise, hypericin is essential for the elimination of food contaminating bacteria such as Listeria and Salmonella species and has photodynamic activity [3]. The potential of H. perforatum formulations for the treatment of dermatological conditions of current interest is being investigated. This traditional medicinal plant may be beneficial for treating skin diseases including psoriasis, viral infections, contact dermatitis, and white skin cancer. These compounds are also associated with anti-inflammatory, antimicrobial, and anticancer mechanisms, as well as stimulating tissue growth and differentiation. Hypericum oil, extracted from the flowering aerial parts of the plant or the fresh or dried flowers, is the most popular topical remedy [4,5].

Traditional Greco-Arabic herbal remedies that included H. triquetrifolium were employed to cure inflammatory conditions. This plant’s traditional Arabic name is Dathi or Nabatat Yohanna (Fig. 1). H. triquetrifolium has also attracted great scientific interest in the last decade because. H. triquetrifolium is a medicinal plant that has a wide range of therapeutic effects since it is abundant in a number of bioactive chemicals [6]. Although H. triquetrifolium and H. perforatum are closely related and share numerous active chemicals, the plants demonstrate significant phytochemical variation [8]. In general, more than one active phytochemical is not thought to be responsible for the pharmacological effects seen in therapeutic herbs. Most often, the synergistic or antagonistic interactions between an extract’s numerous elements are what cause it to act. As a result, we investigated H. triquetrifolium holistically by examining the effects of the methanolic extract, which has a variety of biologically active ingredients and demonstrated high antioxidant activity in our group’s earlier research [8-10]. Regrettably, Palestinian healers no longer employ this herb. This fact illustrates the gradual disappearance of key aspects of the Arab heritage of herbal remedy [11,12].

2. PHYTOCHEMICAL COMPOSITION

Hypericum species contain a large number of secondary metabolites, including phloroglucinol derivatives, naphthodianthrones, xanthones, flavonoids and other phenolic elements, as well as terpenoids, which have been discovered so far in Hypericum species [13,3]. Currently, 768 phytochemicals have been identified from different Hypericum species
Based on their biological functions, 160 of them have been documented for their biological activities [3]. In addition to terpenoids, spirolactone derivatives, and phenylpropanoid compounds (66), phytochemicals include derivatives of hyperforin (140), sampsoniones (93), Rottler-type compounds (40), spirocyclic phloroglucinols (25), simple benzophenones (82), simple phloroglucinol derivatives (131), xanthones (139), dianthrone compounds (11), and flavonoids (32) [14]. Since being isolated and thoroughly examined, phytochemicals from different Hypericum species were revealed to have anti-inflammatory, antioxidant, antineoplastic, antimicrobial, hepatoprotective, neuroprotective, antiviral, antidepressant, antinoceptive, antioxidant, antiparasitic, antimalarial, hypoglycemic, lipid-lowering, and photodynamic activities. Table 1 lists the biological functions of Hypericum derivatives on inflammation and antioxidant effectiveness [3].

Table 1. Anti-inflammatory and antioxidant activities of bioactive phytochemical derivatives from Hypericum species [3]

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Phytochemical group</th>
<th>Hypericum Species</th>
<th>Anti-inflammatory and antioxidant activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norhypersampsone A</td>
<td>Benzophenones</td>
<td>H. sampsonii</td>
<td>Reduces NO release in LPS-induced RAW 264.7 macrophages</td>
</tr>
<tr>
<td>Monogxanthone A</td>
<td>Xanthone</td>
<td>H. monogynum</td>
<td>Reduces NO release in LPS-induced BV2 microglia cells</td>
</tr>
<tr>
<td>Monogxanthone B</td>
<td>Xanthone</td>
<td>H. monogynum</td>
<td>Inhibition of NO release in LPS-induced BV2 microglia cells</td>
</tr>
<tr>
<td>Hypermongone G</td>
<td>Hyperforin</td>
<td>H. monogynum</td>
<td>Reduces NO release</td>
</tr>
<tr>
<td>Cariphene A</td>
<td>Benzophenones</td>
<td>H. carinatum</td>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>5,7-Dihydroxy-2-isobutyl-4Hchromen-4-one</td>
<td>Flavonoids</td>
<td>H. petiolulatum</td>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>Isoquercetin</td>
<td>Flavonoids</td>
<td>H. thasium</td>
<td>Protection against damage from H2O2-induced toxicity in H9C2 cells</td>
</tr>
<tr>
<td>Hyperoside</td>
<td>Flavonoids</td>
<td>H. ascyron</td>
<td>Protection against damage from H2O2-induced toxicity in H9C2 cells</td>
</tr>
<tr>
<td>Isohyperoside</td>
<td>Flavonoids</td>
<td>H. ascyron</td>
<td>Protection against damage from H2O2-induced toxicity in H9C2 cells</td>
</tr>
<tr>
<td>Hyperinakin</td>
<td>Benzophenones</td>
<td>H. nakamuraI</td>
<td>anti-inflammatory activity</td>
</tr>
<tr>
<td>Otogirin</td>
<td>Phloroglucinol</td>
<td>H. erectum</td>
<td>Inhibitory production of thromboxane A2 and leukotriene D4</td>
</tr>
<tr>
<td>Otogirone</td>
<td>Phloroglucinol</td>
<td>H. erectum</td>
<td>1. Inhibitory production of thromboxane A2 and leukotriene D4</td>
</tr>
<tr>
<td>Hyperibrin A</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective effects</td>
</tr>
<tr>
<td>Hyperscabrone I</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Hyperscabrone C</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Hyperscabrone D</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Hyperscabrone E</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Scrobiculatone B</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Hyperscabrone G</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>Compound name</td>
<td>Phytochemical group</td>
<td>Hypericum Species</td>
<td>Anti-inflammatory and antioxidant activities</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Hyperinrin A</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective activity</td>
</tr>
<tr>
<td>Hyperscabron A</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective activity</td>
</tr>
<tr>
<td>Hyperinrin D</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective activity</td>
</tr>
<tr>
<td>Hyperinrin E</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective effects</td>
</tr>
<tr>
<td>Hyperscabron F</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective activity</td>
</tr>
<tr>
<td>Hyperscabron G</td>
<td>Hyperforin</td>
<td>H. scabrum</td>
<td>Neuroprotective activity</td>
</tr>
<tr>
<td>Hyperasocrin A</td>
<td>Hyperforin</td>
<td>H. ascyron</td>
<td>Neuroprotective efficacy against glutamate-induced toxicity in SK-N-SH cells</td>
</tr>
<tr>
<td>Hyperasocrin H</td>
<td>Hyperforin</td>
<td>H. ascyron</td>
<td>Neuroprotective efficacy against glutamate-induced toxicity in SK-N-SH cells</td>
</tr>
<tr>
<td>Monoxanthone A</td>
<td>Xanthone</td>
<td>H. monogynum</td>
<td>Neuroprotective efficacy in corticosterone in PC12 cells</td>
</tr>
<tr>
<td>Monoxanthone B</td>
<td>Xanthone</td>
<td>H. monogynum</td>
<td>Neuroprotective efficacy in corticosterone in PC12 cells</td>
</tr>
<tr>
<td>Hyperfoliatin</td>
<td>Hyperforin</td>
<td>H. perfoliatum</td>
<td>Reduce absorption of neuronal monoamine</td>
</tr>
<tr>
<td>Hyperforin</td>
<td>Hyperforin</td>
<td>H. perforatum</td>
<td>Antidepressant action in rats</td>
</tr>
<tr>
<td>Adhyperforin</td>
<td>Hyperforin</td>
<td>H. perforatum</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Hyperfoliatin</td>
<td>Hyperforin</td>
<td>H. perfoliatum</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Hyperbrasiliol B</td>
<td>Rottlerin-type</td>
<td>H. laricifolium</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Andinin A</td>
<td>Rottlerin-type</td>
<td>H. andinum</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Uliginosin A</td>
<td>Rottlerin-type</td>
<td>H. thesifolium</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Uliginosin B</td>
<td>Rottlerin-type</td>
<td>H. uliginosum</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Hypercin</td>
<td>Dianthrenes</td>
<td>H. perforatum</td>
<td>Antidepressant action in mice</td>
</tr>
<tr>
<td>Uliginosin A</td>
<td>Rottlerin-type</td>
<td>H. thesifolium</td>
<td>Antinociceptive action in mice</td>
</tr>
<tr>
<td>Uliginosin B</td>
<td>Rottlerin-type</td>
<td>H. uliginosum</td>
<td>Antinociceptive action in mice</td>
</tr>
<tr>
<td>Austrobrasiliol A</td>
<td>Rottlerin-type</td>
<td>H. austrobrasilense</td>
<td>Antinociceptive action in mice</td>
</tr>
<tr>
<td>Austrobrasiliol B</td>
<td>Rottlerin-type</td>
<td>H. austrobrasilense</td>
<td>Antinociceptive action in mice</td>
</tr>
<tr>
<td>Isoaustrobrasiliol B</td>
<td>Rottlerin-type</td>
<td>H. austrobrasilense</td>
<td>Antinociceptive action in mice</td>
</tr>
<tr>
<td>Japonicas A</td>
<td>Rottlerin-type</td>
<td>H. polyanthemum</td>
<td>Antinociceptive sensitivity in mice</td>
</tr>
<tr>
<td>6-Isobutryl-5,7- dimethoxy-2,2-dimethyl-benzopyran</td>
<td>Phloroglucinol</td>
<td>H. polyanthemum</td>
<td>Antinociceptive sensitivity in mice</td>
</tr>
</tbody>
</table>

Hyperinrin, flavonoids, phenolic components such chlorogenic acid, and essential oil are all reported to be available in *H. triquetrifolium*, according to the published studies [15-17]. In previous research on the essential oil of *H. triquetrifolium* from Italy [18], the main components of the oil were identified as N-nanos 15%, germacrene-D 13%, caryophyllene oxide 12%, b-caryophyllene 11%, a-pinene 10%, myrcene 5%, b-pinene 4%, and sabine 3%. One-hexanal 19%, 3-methylnonane 13%, -pinene 12%, caryophyllene oxide 5%, 2-methyldecan 5%, and -amomone 4% are the major components of the essential oil extracted from the aerial portions of *H. triquetrifolium* cultivated in Turkey. Humulene, cis-calamene, cadinene, bi-cyclogermacrene, eremophilene, caryo-phylldene, E-y-bisabolone, and pinene were also found to be the main constituents of the *H. triquetrifolium* oil from Tunisia [19,20].

2.1 Biological Activities of *H. triquetrifolium*

Various studies have been done on this plant's antioxidant, antibacterial, anti-inflammatory, antinociceptive, and cytotoxic properties [21-25]. Four substances, specifically 3,8 biflavonoid, flavonol, flavonol glycoside, and phenolic acid "From the aerial portions of *H. triquetrifolium*'s ethyl acetate extract, biapigenin, quercetin, rutin, and chlorogenic acid were described. The analysis of the separated compounds' antioxidant activity revealed that 3,8 "Rutin,
quercetin, and chlorogenic acid had slightly weaker activity than α-tocopherol whereas biapigenin had similar activity to that of α-tocopherol [26]. The antioxidant effects of an ethanol extract of the species *H. triquetrifolium* have been further studied. The extract had a very high IC50 of 39.0 g/ml using 1,1-diphenyl-2-picyrylhydrayl (DPPH) radical scavenging test. This suggests that the plant's ethanol extracts may be a source of organic antioxidants [27].

Due to their function in preserving the antioxidant system and delaying aging, atherosclerosis, and inflammatory disorders, potential novel antioxidant therapies are considered to be of high interest [28]. The most crucial element in the antidepressant action of Hypericum extracts is the inhibition of monoamine oxidase activity by the bioactive components of hypericin [29]. Only a few Hypericum species, such as *H. triquetrifolium* and *H. perforatum*, possess hypericin [15]. The medicinal plants' numerous biological functions, which have been documented in the literature, make them an intriguing source of medicine.

2.2 Anti-Inflammatory Effects of *H. triquetrifolium*

Inflammation is a sophisticated physiological reaction to pathogens or tissue damage that strives to get rid of the invader and get the system to its normal state [30]. It is acknowledged as a protective host response that is crucial for life but that, if dysregulated, can also be harmful. To keep tissue integrity, inflammation must be effectively controlled. Lack of control over this defensive mechanism and the "misinterpretation" or persistence of inflammatory signals not only raise the risk of complex and widespread diseases like type 2 diabetes but also chronic inflammatory diseases like arthritis and autoimmune diseases [31–34].

![Fig. 1. Biological activities of Hypericum triquetrifolium](image-url)
Recent *in vivo* and *in vitro* investigations, as well as Greco-Arabic and Islamic medicine, all attest to the anti-inflammatory effects of *H. triquetrum* extract [35]. In human monocyte cell line (THP-1) cells, we examined the anti-inflammatory mechanism of *H. triquetrum*. The pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS) were all assessed for expression and release. *H. triquetrum* reduced NO and TNF-α production as well as iNOS and TNF-α gene expression, but not IL-6 [36,37].

The anti-inflammatory impacts of *H. triquetrum* extracts (HT-extract) on lipopolysaccharide-stimulated human peripheral blood mononuclear cells (PBMCs) were tested in another *in vitro* investigation [35]. By measuring the amounts of TNF-α, IL-1, and interleukin 10 (IL-10) proteins and mRNA, HT-extract doses up to 250 g/ml had no harmful effects when used in the anti-inflammatory impact experiments. At a concentration of 250 g/ml, HT-the extract dramatically reduced TNF-α and IL-6 expression and secretion. The extract considerably boosted the secretion of IL-10 and the levels of mRNA at a dosage of 125 g/ml of HT. Additionally, the DPPH assay revealed that the HT extract had reasonably strong antioxidant activity (IC50 of 5 g/ml). These findings imply that the HT-extract likely inhibits the expression of both pro- and anti-inflammatory cytokines at the protein and gene levels in PBMCs [36–38].

An additional *in vivo* investigation examined the anti-inflammatory properties of *H. triquetrum* in a rat model of inflammation induced by carrageenan. Thirty minutes before receiving a carrageenan injection, male Wistar rats were given intraperitoneal treatments of dimethyl sulfoxide (DMSO) (as a control group) and *H. triquetrum* extract. In contrast to saline injection, intraplantar carrageenan administration resulted in time-dependent paw edema in rats. Two hours after carrageenan injection, *H. triquetrum* extract (25, 50, or 60 mg/kg) was administered intraperitoneally and suppressed paw swelling in a dose-dependent manner, indicating that the extract may have anti-inflammatory effects in rats [38,39].

Another *in vitro* experiment looked into the effects of *H. triquetrum* extract (50% ethanol, 50% water) on apoptosis, cell cycle modulation, and cell cycle arrest in human colon cancer cell line (HCT-116) [40]. An Annexin V-Cy3 assay was used to determine if *H. triquetrum* extract caused cell death through the apoptotic mechanism. After being exposed to 0.064, 0.125, 0.25, and 0.5 mg/mL *H. triquetrum* extract for 24 hours, the percentage of apoptotic HCT-116 cells was 50.9%, 71.6%, 85.5%, and 96.1%, respectively. When HCT-116 cells were exposed to 0.25 and 0.5 mg/mL *H. triquetrum* extract for three hours, the amount of caspase-3-specific substrate that was cleaved was 38.9 1.5% and 57.2 3%, respectively. *H. triquetrum* extract showed no impact on the mRNA levels of Apaf-1 and NOXA, according to RT-PCR analysis. Furthermore, it was shown that adding 0.125 mg/mL and 0.25 mg/mL *H. triquetrum* extract for 24 hours slowed down the HCT-116 cells' ability to move through the cell cycle. The extract's GC/MS analysis revealed 21 phytochemicals that are known to promote apoptosis and function as cell cycle arrestant. The chemicals found in *H. triquetrum* are all brand-new. These findings imply that the caspase-dependent pathway plays a major role in the apoptosis that *H. triquetrum* extract causes in human colon cells. In light of this, *H. triquetrum* extract seems to be a potent therapeutic agent for the treatment of colon cancer [40].

Free radicals are atoms, molecules, or ions with unpaired electrons capable of independent existence that are formed by the internal natural metabolism of aerobic cells. Reactive free radicals include, for example, reactive oxygen species (ROS) and reactive nitrogen species (RNS). These species are created by inflammatory reactions, phagocytosis, the arachidonate pathway, ischemia, exercise, and metabolic reactions in mitochondria or peroxisomes [41–44]. Low concentrations of reactive species can alter the activity of transcription factors like Nuclear factor-kappa B (NF-kappa B), Tumor protein P53, and Nuclear factor erythroid 2-related factor 2 (NRF2) and set off a number of protein kinase cascades that regulate autophagy, apoptosis, and regeneration interact.

However, under physiological circumstances, the production of reactive species can be balanced by internal and external forms of antioxidants. Endogenous antioxidant defense can be either non-enzymatic (such as uric acid, glutathione, bilirubin, thiols, albumin, and dietary components including vitamins and phenols) or enzymatic (such as glutathione peroxidase, catalase, and superoxide dismutase) [45,46]. Numerous
investigations have demonstrated that different Hypericum species are important sources of free radical scavengers, metal chelators, and lipid peroxidation inhibitors.

DPPH, metal chelating, reducing power, hydroxyl radical, total antioxidant activity, and lipid peroxidation inhibition tests, the antioxidant activity of ethanol extracts of H. triquetrum and H. scabroides was examined [47]. The DPPH radical scavenging assay revealed that both of the studied extracts were quite effective. In the DPPH radical scavenging assay, the IC50 values of H. triquetrum and H. scabroides were 39.0 and 33.8 g/ml, respectively. The total phenolic compound content was also identified, and it was shown that 1 mg of the ethanol extracts of H. triquetrum and H. scabroides had total phenolic contents that were equivalent to 267 and 333 g of gallic acid, respectively. The ability to chelate metals was found to be less effective than EDTA. High reducing power was demonstrated by both Hypericum species' ethanol extracts, spiculate that the extracts possess strong electron donor ability. Hypericum extracts were proven to restrict the hydroxyl radical's ability to break down deoxyribose, mostly via scavenging hydroxyl radicals as compared to chelating iron ions. Ferric thiocyanate (FTC) and thiobarbituric acid (TBA) techniques were used to assess the overall antioxidant activity of ethanol extracts from H. triquetrum and H. scabroides. Both extracts had antioxidant activity that was comparable to vitamin E. Furthermore, in rat brain homogenate, both extracts displayed an extraordinary capacity to inhibit Fe2+-induced lipid peroxidation. These findings imply that extracts of H. triquetrum and H. scabroides may be a source of free radicals in nature [48].

3. PROTECTIVE ROLE AND THERAPEUTIC EFFECTS OF H. perforatum

One of the most extensively examined medicinal plants is H. perforatum (Fig. 2), it is likely the most well-known one available today. The ancient Greeks were the first to use this species as an herbal cure to heal a wide range of internal and exterior illnesses. Since then, it has continued to be a well-liked treatment for burns, depression, and anxiety. It is also employed as a plant that is antiviral, antineuralgic, and neuroprotective [48]. Recent studies have shown the effectiveness of H. perforatum in the management of a wide range of complications, such as cancer, inflammation-related illnesses, diabetes, bacterial and viral illnesses, as well as an antioxidant and neuroprotective agent [48,49].

Pharmaceutical drugs made from H. perforatum currently, consumed by millions of people, generate annual sales of over a few billion dollars worldwide. As was already noted, H. perforatum has a large number of active ingredients. Hypericin and hyperforin are thought to be responsible for a large portion of H. perforatum's medicinal properties. Other substances also seem to have therapeutic potential, such as the flavonoids rutin, quercetin, and kaempferol. In-depth research has been done on H. perforatum in vitro, in vivo on animal models, and in clinical trials. This plant's ability to treat depression has been extensively researched, and the underlying mechanisms are well understood. When consumed at recommended doses, products from H. perforatum have comparatively low negative effects. Nevertheless, several drug interactions have been documented. Recent research suggests that these interactions are caused by the components of H. perforatum's capacity to stimulate the hepatic or intestinal cytochrome P450 enzymes [47,48]. In vitro and animal studies have shown that extracts of H. perforatum have significant anti-inflammatory activity. For example, rats fed H. perforatum had lower levels of blood and intestinal enzymes responsible for inflammation of the colon [50] and showed a lower incidence of gastric ulceration [51]. H. perforatum hydrophobic extracts were even more potent anti-inflammatory agents than hydroalcoholic extracts [52]. The anti-inflammatory properties of H. perforatum have been attributed to three different modes of action. The expression of proinflammatory genes such cyclooxygenase-2, IL-6, and inducible iNOS was reduced by extracts of H. perforatum [53]. Extensive research with the latter approach shown that H. perforatum extracts reduced Janus kinase 2 activity, which in turn triggered a sequence of reactions that prevented the downregulation of STAT-1-DNA binding and further disturbed gene transcription [53]. Prostaglandin E2 (PGE2), a molecule associated with inflammation, was prevented from being produced by pseudohypericin and hyperforin [54]. Chloric acid, amentoflavone, quercetin, and pseudohypericin were shown to be the four main components of the H. perforatum extract that worked together to diminish the inflammation caused by PGE2 [55]. This four-part mechanism
seems to have only been effective when pseudohypericin was activated in the light presence. In experimental mice that had pleurisy brought on by carrageenan, H. perforatum extract also decreased inflammation [55]. The extracts had several effects, most notably suppressing STAT -3 and NF-kappa B [56].

According to recent findings, H. perforatum extracts can prevent neurotoxicity, inflammation, and digestive issues by reducing oxidative stress. This herb's extracts that are high in flavonoids can prevent PC12 cells from going into apoptosis when exposed to hydrogen peroxide. As a result of hydrogen peroxide activity, H. perforatum extracts can stop DNA fragmentation and cell shrinkage [57]. Therefore, oxidative stress-related neurodegenerative illnesses including Parkinson's disease and Alzheimer's disease can be successfully treated with H. perforatum extracts rich in flavonoids [58].

By lowering mitochondrial lipid membrane oxidation and maintaining mitochondrial transmembrane electrical potential, quercetin and kaempferol have neuroprotective effects [59]. Contrarily, biapigenin mainly affects mitochondrial bioenergetics and reduces their capacity to take up calcium [59]. In addition, animals treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed lower astrocyte activation and MAO-B activity when H. perforatum extract was administered [60]. As a result, H. perforatum protects against Parkinson's disease in mice caused by MPTP [60]. By lowering mitochondrial lipid membrane oxidation and maintaining mitochondrial transmembrane electrical potential, quercetin and kaempferol have neuroprotective effects [59]. Contrarily, biapigenin mainly affects mitochondrial bioenergetics and reduces their capacity to take up calcium [59]. In addition, animals treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed lower astrocyte activation and MAO-B activity when H. perforatum extract was administered [60]. As a result, H. perforatum protects against Parkinson's disease in mice caused by MPTP [60].

More research revealed that MPTP-induced Parkinson's disease in male Swiss albino mice may be treated with a combination of bromocriptine and H. perforatum extract that dramatically boosted dopamine and 3,4-dihydroxyphenylacetic acid, a metabolite of dopamine [61]. In cultured rat hippocampus neurons, ethanolic extracts of H. perforatum and those containing flavonol glycosides, flavonol, and biflavone aglycones reduced lipid peroxidation and cell death [62]. In microglia, flavonoids reduced the production of amyloid-induced reactive oxygen species. Microglia's cell survival and membrane fluidity were both boosted by the flavanols (+)-catechin and (-)-epicatechin from H. perforatum [63]. When given extracts from H. perforatum, rats subjected to chronic stress performed better in terms of working memory, recognition memory, and recollection of passive avoidance behaviors compared to control individuals who did not receive extracts [64]. The herb greatly enhanced spatial working memory that is hippocampus-dependent and mitigated the detrimental effects of stress on cognitive performance [64]. H. perforatum extracts decreased oxidative stress in the brains of rats given rotenone, a pro-oxidant [65]. These results were attributable to liposomal quercetin, which considerably preserved the antioxidant enzymes' functions in the brain tissue. It has been concluded that standardized extracts of H. perforatum may be the preferred treatment for depressed older individuals showing degenerative diseases linked with increased oxidative stress [65].

A preparation containing a hyperforin-rich extract of H. perforatum had an effect on free radical scavenging cells in a double-blind, placebo-controlled study in 11 healthy subjects [66]. The results suggest that application of the hyperforin-rich cream to the skin can prevent the production of radicals by more than 80%. A formulation free of hypericin and containing 44.3% hyperforin was tested for its ability to block free radicals and provide photoprotection in vivo. These results show that hyperforin is an effective free radical scavenger and that it can be used to reduce the degree of skin aging. To the best of the authors' knowledge, the antioxidant capacity of Hypericum species remains the most widely documented compared to other biological cosmeceutical tests [42,67].

Kmail; Euro. J. Med. Plants, vol. 33, no. 12, pp. 34-47, 2022; Article no.EJMP.94928
The researchers studied the antioxidant capacity and free radical scavenging ability of the constituents of *Hypericum perforatum* plant. The test of reducing capacity of iron in plasma was used to determine the total antioxidant effect of the ethanolic extract. The ethanolic extract of *H. perforatum* was found to contain a significant number of total flavonoids. In addition, the ethanolic extract of *H. perforatum* showed strong antioxidant activity. Moreover, the ability of the ethanolic extract to scavenge flavonoids was time-dependent. The ethanolic extract of *H. perforatum* showed considerable free radical scavenging activity against ABTS. The ethanolic extracts of *H. perforatum* had a gradual but consistent level of dynamic DPPH and ABTS scavenging activity. The amount of total flavonoids or phenolic acids present could play an important role in the antioxidant activity and free radical scavenging activity [68]. A study conducted in Syria on the aerial parts of St. John’s wort - leaves, stems, petals, and flowers - found that water, ethanol, methanol, and acetone extracts were all efficient scavengers of ABTS and DPPH stable free radicals. Extracts with a higher concentration of phenols were remarkably efficient radical scavengers [69,70].

The antioxidant activities of the bioactive components in water-ethanol and water extracts of flowers, flower buds, flower-bearing branches, non-flower-bearing branches, and shoots with leaves of *H. perforatum* were investigated. The water-ethanol extract of shoots had the highest content of phenols, and the water-ethanol extract of flowers had the highest concentrations of hypericin and pseudohypericin. While *H. perforatum* flowers had the highest concentration of hyperforin throughout the development period, floral buds had the highest concentration. Additionally, because of their high phenolic content, branches and shoots demonstrated significant antioxidant activity [71,72].

A verum cream with 1.5% of an *H. perforatum* extracts and hyperforin (44.3%) was investigated for its ability to scavenge free radicals when skin cells were subjected to solar-stimulated radiation. The extract of *H. perforatum* lacked hypericin. According to the results [72], hyperforin may be a
potent free radical scavenger, as evidenced by the cream’s antioxidative action and hyperforin-rich HP extract. The effectiveness of the verum cream on the barrier function and the radical skin protection offered by topically applying it during visible/near infrared (VIS/NIR) irradiation were evaluated in a placebo-controlled, double-blind trial. When a single application of basic cream without H. perforatum extract was performed, both the placebo and verum creams nearly completely inhibited the radical generation, and both creams also offered an immediate level of protection. Furthermore, after applying basic and verum creams for 4 weeks, the radical production was reduced by 45% and 78%, respectively [73].

4. CONCLUSION

The detection and purification of specific immunomodulatory plant compounds has the potential to reduce the side effects and high cost of conventional drugs [74]. Both H. perforatum and H. triquetrilolium are popular mental treatment herbs. Therefore, psychological issues are the focus of the majority of treatment research conducted on these two species. However, numerous in vitro, in vivo, and clinical investigations have shown that it has promise medicinal effects for a variety of conditions, including inflammation, infectious issues, and skin disorders, which may someday replace standard medical therapies. The range of medication interactions that H. perforatum and H. triquetrilolium can induce is one of its most significant characteristics. The findings of this study can serve as a guide for future research into the anti-inflammatory properties of similar compounds.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

The author would like to acknowledge Professor Bashar Saad and Dr. Bayan Mansour for their helpful suggestions.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

70. Sacic E. Hgh performance thin-layer chromatographic method applications for qualitative and quantitative analysis of flowering aerial parts of hypericum perforatum L. and their implementations for some hypericum species and products. [Doctoral thesis, Yeditepe University]; 2017.

© 2022 Kmail: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/94928